On product-one sequences with congruence conditions over non-abelian groups

Kevin Zhao^{a,*}, Qinghai Zhong^{b,c}

^aDepartment of Mathematics and Statistics, Nanning normal university, Guangxi 530100, China ^bInstitute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstraße 36, 8010 Graz, Austria ^cSchool of Mathematics and statistics, Shandong University of Technology, Zibo, Shandong 255000, China

Abstract

Let G be a finite group. For a positive integer d, let $\mathbf{s}_{d\mathbb{N}}(G)$ denote the smallest integer ℓ such that every sequence S over G of length $|S| \geq \ell$ has a nonempty product-one subsequence T with $|T| \equiv 0 \pmod{d}$. In this paper, we mainly study this invariant for dihedral groups D_{2n} and metacyclic groups $C_p \ltimes_s C_q$.

Keywords: product-one sequence, dihedral groups, metacyclic groups, congruence conditions.

1. Introduction

Let G be a finite multiplicative group and let $\exp(G) = \operatorname{lcm}\{\operatorname{ord}(g) : g \in G\}$ be the exponent of G. By a sequence S over G, we mean a finite unordered sequence with terms from G and repetition allowed. We say S is a productone sequence if its terms can be ordered so that their product equals the identity element of G. In most of the cases, a direct "zero-sum" problem asks for the the smallest integer $\ell \in \mathbb{N}$ such that every sequence S over G with length $|S| \geq \ell$ has a product-one subsequence with prescribed length.

^{*}Corresponding author

Email addresses: zhkw-hebei@163.com (Kevin Zhao), qinghai.zhong@uni-graz.at (Qinghai Zhong)

Let $L \subset \mathbb{N}$ be nonempty subset and let $\mathbf{s}_L(G)$ be the smallest $\ell \in \mathbb{N} \cup \{\infty\}$ such that every sequence S over G has a product-one subsequence T with length $|T| \in L$. Thus the classic zero-sum invariants $\mathsf{D}(G) = \mathbf{s}_{\mathbb{N}}(G)$ (the Davenport constant), $\mathbf{s}(G) = \mathbf{s}_{\{\exp(G)\}}(G)$ (the EGZ constant), and $\eta(G) =$ $\mathbf{s}_{[1,\exp(G)]}(G)$. The readers may want to consult one of the surveys or monographs ([9, 16, 13, 17]). Moreover, $\mathbf{s}_L(G)$ is also investigated for various other sets (see, e.g. [8, 19, 3, 10, 11]). Among others, A. Geroldinger et al. [14] introduced $\mathbf{s}_{d\mathbb{N}}(G)$ for finite abelian groups and obtained the following result. **Theorem A.** Let G be a finite abelian group and let d be a positive integer.

1. Suppose G is cyclic. Then

 $\mathsf{s}_{d\mathbb{N}}(G) = \operatorname{lcm}(|G|, d) + \operatorname{gcd}(|G|, d) - 1.$

2. Suppose $G \cong C_m \oplus C_n$, where $m, n \in \mathbb{N}$ with 1 < m|n. Then

$$\mathbf{s}_{d\mathbb{N}}(G) = \operatorname{lcm}(n,d) + \operatorname{gcd}(n,\operatorname{lcm}(m,d)) + \operatorname{gcd}(m,d) - 2.$$

In the present paper, we mainly focus on $\mathbf{s}_{d\mathbb{N}}(G)$ for non-abelian groups. The study of sequences for non-abelian groups dates back to the 1970s (see [23]), and fresh impetus came from applications in factorization theory and invariant theory (see [18, 15, 5, 4, 7]). Diheral groups, dicyclic groups, and metacyclic groups are the most studied ones. Our main results are the following.

Theorem 1. Let D_{2n} be a dihedral group, where $n \ge 3$, and let d be positive integer. Then

$$\mathbf{s}_{d\mathbb{N}}(D_{2n}) = \begin{cases} 2d + \lfloor \log_2 n \rfloor, & \text{if } n \mid d \text{ and } d \text{ is odd}, \\ d + n = \mathbf{s}_{\{d\}}(D_{2n}), & \text{if } n \mid d \text{ and } d \text{ is even}, \\ nd + 1, & \text{if } \gcd(n, d) = 1. \end{cases}$$

Remark: Note that n divides $\exp(D_{2n})$ and $\exp(D_{2n})$ is always even. We have

$$\mathbf{s}_{k\exp(D_{2n})\mathbb{N}}(D_{2n}) = \mathbf{s}_{k\exp(D_{2n})}(D_{2n}) = k\exp(D_{2n}) + n$$
.

Theorem 2. Let $C_p \ltimes_s C_q = \langle x, y : x^p = y^q = 1, yx = xy^s, \operatorname{ord}_q(s) = p$, and p, q are primes be a metacyclic group. Then

$$\mathbf{s}_{kp\mathbb{N}}(C_p \ltimes_s C_q) = \operatorname{lcm}(kp,q) + p - 2 + \operatorname{gcd}(kp,q),$$

where $k \in \mathbb{N}$.

2. Preliminaries

Our notation and terminology are consistent with [6, 17, 18]. We briefly gather some key notions and fix notation. Let \mathbb{N} denote the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For real numbers $a, b \in \mathbb{R}$, we let $[a, b] = \{x \in \mathbb{Z} :$ $a \leq x \leq b\}$ be the discrete interval between a and b. For positive integers m and n, we denote by gcd(m, n) and lcm(m, n) the greatest common divisor and the least common multiple of m, n respectively. If gcd(n,m) = 1, we let $ord_n(m)$ be the minimal positive integer ℓ such that $g^{\ell} \equiv 1 \pmod{n}$.

Let G be a multiplicatively written finite group with identity $1_G \in G$ and let A, B be two nonempty subsets of G. We denote $A \cdot B = \{a \cdot b : a \in A, b \in B\}$. Let $\mathcal{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. In combinatorial language, elements of $\mathcal{F}(G)$ are called sequences over G, which are unordered finite sequences of terms from G with repetition allowed. In order to distinguish between the group operation in G and the sequence operation in $\mathcal{F}(G)$, we use a bold dot symbol \cdot for the multiplication in $\mathcal{F}(G)$, so $G = (G, \cdot)$ and $\mathcal{F}(G) = (\mathcal{F}(G), \cdot)$. In order to avoid confusion between exponentiation of the group operation \cdot in G and exponentiation of the sequence operation \cdot in $\mathcal{F}(G)$, we use brackets to denote exponentiation in $\mathcal{F}(G)$. Thus, for $g \in G$, $T \in \mathcal{F}(G)$, and $k \in \mathbb{N}$, we have $g^{[k]} = \underbrace{g \cdot \ldots \cdot g}_{k}$ and $T^{[k]} = \underbrace{T \cdot \ldots \cdot T}_{k}$. Let

$$S = g_1 \cdot \ldots \cdot g_{\ell} = \prod_{g \in G} g^{[\mathsf{v}_g(S)]} \in \mathcal{F}(G)$$

be a sequence over G. Then $v_q(S) \in \mathbb{N}_0$ is the multiplicity of g in S,

$$\begin{split} |S| &= \ell = \sum_{g \in G} \mathsf{v}_g(S) \in \mathbb{N}_0 \text{ is the length of } S;\\ \mathsf{h}(S) &= \max\{\mathsf{v}_g(S): \ g \in G\} \text{ is the maximum multiplicity of } S;\\ \supp(S) &= \{g \in G: \ \mathsf{v}_g(S) > 0\} \subseteq G \text{ is the support of } S;\\ \pi(S) &= \{g_{\tau(1)} \cdot \ldots \cdot g_{\tau(\ell)} \in G: \tau \text{ is a permutation of } [1, \ell]\} \subset G\\ &= \text{ is the set of products of } S. \end{split}$$

If |S| = 0, then we say S is empty and use the convention that $\pi(S) = \{1_G\}$. We denote $S^{-1} = g_1^{-1} \cdot \ldots \cdot g_\ell^{-1}$ and $S_A = \prod_{g \in A}^{\bullet} g^{[\mathsf{v}_g(A)]}$ for a subset $A \subset G$. Note that $\gcd(S_1, S_2) = \prod_{g \in G}^{\bullet} g^{[\min\{\mathsf{v}_g(S_1), \mathsf{v}_g(S_2)\}]} \in \mathcal{F}(G)$ for any

 $S_1, S_2 \in \mathcal{F}(G)$. For $n \in \mathbb{N}$, the *n*-products and sequence subproducts of S are respectfully denoted by

$$\Pi_n(S) = \bigcup_{T \mid S, |T| = n} \pi(T) \subset G \quad \text{and} \quad \Pi(S) = \bigcup_{n \geq 1} \Pi_n(S) \subset G \,.$$

In addition, we write

$$\Pi_{\leq k}(S) = \bigcup_{j \in [1,k]} \Pi_j(S) \text{ and } \Pi_{\geq k}(S) = \bigcup_{j \geq k} \Pi_j(S).$$

We say S is

- squarefree if $v_g(S) \leq 1$ for all $g \in G$;
- a subsequence of W if W is a sequence over G with $\mathsf{v}_g(W) \ge \mathsf{v}_g(S)$ for all $g \in G$ (Since S divides W in $\mathcal{F}(G)$, we denote it by $S \mid W$);
- a product-one sequence if $1_G \in \pi(S)$;
- product-one free if $1_G \notin \Pi(S)$;
- a minimal product-one sequence if S is a product-one sequence and $S = T_1 \cdot T_2$ implies that T_1 or T_2 is empty, where T_1, T_2 are two product-one sequences.
- a \pm -product-one sequence if there exist a permutation τ of $[1, \ell]$ and $\varepsilon_i \in \{\pm 1\}$ for $1 \leq i \leq \ell$ such that $g_{\tau(1)}^{\varepsilon_1} \cdot g_{\tau(2)}^{\varepsilon_2} \cdot \ldots \cdot g_{\tau(\ell)}^{\varepsilon_\ell} = 1_G$

The following four lemmas collect some well-known results in additive combinatorics, which we will need later.

Lemma 3 ([21, Lemma 2.2]). Let A, B be two nonempty subsets of a finite group G. If |A| + |B| > |G|, then $A \cdot B = G$.

Lemma 4. Let C_n be a cyclic group of order n and let D_{2n} be a dihedral group of order 2n, where $n \ge 3$.

1. $D(C_n) = \mathbf{s}_{\mathbb{N}}(C_n) = n$ and every minimal product-one sequence of length n over C_n must have the form $S = g^{[n]}$, where $g \in C_n$ with $\operatorname{ord}(g) = n$ ([16, Theorem 5.1.10.1]).

- 2. $s_{\{n\}}(C_n) = 2n-1$ (Erdős-Ginzburg-Ziv Theorem, see e.g. [16, Corollary 5.7.5]).
- 3. $\mathsf{D}(D_{2n}) = \mathsf{s}_{\mathbb{N}}(D_{2n}) = n + 1 \ ([2, Lemma 4]).$
- 4. $s_{\{2n\}}(D_{2n}) = 3n$ ([2, Theorem 8]).
- 5. If n is even, then $s_{\{n\}}(D_{2n}) = 2n$ ([22, Theorem 1.1.1]).

Lemma 5. Let G be a finite abelian group of order n and let S be a sequence over G

- 1. If $|S| \ge n$, then S has a nonempty product-one subsequence of length $|S| \le h(S)$ ([16, Theorem 5.7.3]).
- 2. If $r = |S| (n-2) \ge 2$ and S has no product-one subsequence of length n, then $|\Pi_{n-2}(S)| = |\Pi_r(S)| \ge r 1$ ([12, Lemma 7]).
- 3. If S is product-one free, then $|\Pi(S)| \ge |S| + |\operatorname{supp}(S)| 1$ ([16, Proposition 5.3.5.1]).

Lemma 6 ([1, Lemma 2.1]). Let G be a multiplicative cyclic group of order n and let S be a sequence over G of length $\geq \lfloor \log_2 n \rfloor + 1$. Then S has a nonempty \pm -product-one subsequence, which means there exist a subset $J \subset [1, |S|]$ such that

$$\prod_{j\in J} g_j = \prod_{i\in[1,|S|]\setminus J} g_i$$

provided that $S = g_1 \cdot g_2 \cdot \ldots \cdot g_{|S|}$.

We also need the following three technical lemmas.

Lemma 7 ([24, Theoem 1.1]). Let G be a multiplicative cyclic group of order n and let S be a sequence over G of length n-1. If $\Pi(S) \neq G$ and for every subgroup $H \subsetneq G$, we have $|S_H| \leq |H| - 1$, then there exists $g \in G$ with $\operatorname{ord}(g) = n$ such that $S = g^{[n-1]}$.

Lemma 8. Let $k, h \in \mathbb{N}$ and let $a_1, \ldots, a_k \in \mathbb{Z}$ with $|a_i| \leq h$ for every $i \in [1, k]$. Then there exists a subset $I \subset [1, k]$ such that $0 \leq \sum_{i \in I} a_i - \sum_{i \in [1,k] \setminus I} a_i \leq h$.

PROOF. We proceed by induction on k. If k = 1, then the assertion is trivial. Suppose $k \ge 2$ and the assertion holds for k - 1. Then there exists $I_1 \subset [1, k-1]$ such that $0 \le \sum_{i \in I_1} a_i - \sum_{j \in [1, k-1] \setminus I_1} a_j \le h$. Let $d = \sum_{i \in I_1} a_i - \sum_{j \in I_1} a_j \le h$.

 $\begin{array}{l} \sum_{j\in[1,k-1]\backslash I_1}a_j. \text{ If } a_k \geq 0, \text{ then } |\sum_{i\in I_1}a_i - \sum_{j\in[1,k]\backslash I_1}a_j| = |d-a_k| \leq h \text{ and} \\ \text{hence the assertion follows by choosing } I = I_1 \text{ or } [1,k] \setminus I_1. \text{ If } a_k < 0, \text{ then} \\ |\sum_{i\in I_1\cup\{k\}}a_i - \sum_{j\in[1,k-1]\backslash I_1}a_j| = |d+a_k| \leq h \text{ and hence the assertion follows} \\ \text{by choosing } I = I_1 \cup \{k\} \text{ or } [1,k-1] \setminus I_1. \end{array}$

Lemma 9. Let G be a cyclic group of order n with $n \ge 3$ odd and let S be a sequence over G of length $\ge n$.

- 1. S has a \pm -product-one subsequence T of odd length with $|T| \leq n$.
- 2. If S has no \pm -product-one subsequence T of odd length with |T| < n, then there exists $g \in G$ with $\operatorname{ord}(g) = n$ and $r \in [0, |S|]$ such that $S = g^{[r]} \cdot (-g)^{[|S|-r]}.$

PROOF. Since G is abelian, for every subsequence T of S, $\pi(T)$ has only one element and we denote such an element by $\sigma(T)$, whence $\pi(T) = {\sigma(T)}$.

1. Let H be a minimal subgroup G such that $|S_H| \ge |H|$. If H is trivial, then the assertions follows immediately. Now suppose $|H| \ge 3$ and let T_H be a subsequence of S_H with length |H|. It suffices to show T_H has a \pm product-one subsequence T of odd length. Thus we may assume G = H and |S| = n. Fix one term g_0 of S and set $S_1 = S \cdot g_0^{[-1]}$,

$$\Pi_E(S) = \bigcup_{\substack{n \text{ is even}}} \Pi_n(S), \qquad \Pi_O(S) = \bigcup_{\substack{n \text{ is odd}}} \Pi_n(S),$$
$$\Pi_E(S_1) = \bigcup_{\substack{n \text{ is even}}} \Pi_n(S_1), \qquad \Pi_O(S_1) = \bigcup_{\substack{n \text{ is odd}}} \Pi_n(S_1).$$

Suppose $\Pi_E(S) \cap \Pi_O(S) \neq \emptyset$. Then there exist subsequences T_1, T_2 of S with $|T_1|$ odd and $|T_2|$ even such that $\sigma(T_1) = \sigma(T_2)$, whence

$$\sigma(T_1 \cdot (\gcd(T_1, T_2))^{[-1]}) = \sigma(T_2 \cdot (\gcd(T_1, T_2))^{[-1]})$$

It follows that $T_1 \cdot T_2 \cdot (\operatorname{gcd}(T_1, T_2))^{[-2]}$ is \pm -product-one subsequence of odd length.

Suppose $\Pi(S_1) \neq G$. It follows by Lemma 7 that $S = g^{[n-1]}$ for some $g \in G$ with $\operatorname{ord}(g) = n$. Then there exists $x \in [0, n-1]$ such that $g_0 = g^x$. If x is odd, then $g^{[n-x]} \cdot g_0$ is a product-one sequence of odd length. If x is even, then $g^{[x]} \cdot g_0$ is a \pm -product-one sequence of odd length.

Assume to the contrary that $\Pi_E(S) \cap \Pi_O(S) = \emptyset$ and $\Pi(S_1) = G$. Then

$$\Pi_E(S_1) \bigcup g_0 \Pi_O(S_1) \subset \Pi_E(S) \text{ and } \Pi_O(S_1) \bigcup g_0 \Pi_E(S_1) \subset \Pi_O(S) ,$$

whence

$$n = |G| \le |\Pi_O(S_1)| + |\Pi_E(S_1)| \le |\Pi_O(S)| + |\Pi_E(S)| \le n \quad \text{and} \\ n = |G| \le |g_0 \Pi_O(S_1)| + |g_0 \Pi_E(S_1)| \le |\Pi_E(S)| + |\Pi_O(S)| \le n \,.$$

Therefore $|\Pi_O(S_1)| = |\Pi_O(S)| = |g_0 \Pi_E(S_1)| = |\Pi_E(S_1)|$ and hence $n = 2|\Pi_E(S_1)|$ is even, a contradiction.

2. Let S_0 be a subsequence of S with length n. We first show that S_0 has the asserted form.

Suppose S_0 is a product-one sequence. If S_0 is not a minimal product-one sequence, then $S_0 = S_1 \cdot S_2$, where S_1, S_2 are nonempty product-one subsequences, whence $|S_1|$ or $|S_2|$ must be odd, a contradiction to our assumption. Thus S is a minimal product-one sequence and it follows by Lemma 4.1 that $S_0 = g^{[n]}$ for some $g \in G$ with $\operatorname{ord}(g) = n$.

Suppose S_0 is not a product-one sequence. By 1., S_0 must be a \pm -productone subsequence and hence $S_0 = T_1 \cdot T_2$ with $\sigma(T_1) = \sigma(T_2)$, where T_1, T_2 are nonempty sequences.

If there exist subsequences $T'_1 | T_1$ and $T'_2 | T_2$ with $1 \leq |T'_1 \cdot T'_2| < |S_0|$ such that $\sigma(T'_1) = \sigma(T'_2)$, then both $T'_1 \cdot T'_2$ and $S_0 \cdot (T'_1 \cdot T'_2)^{[-1]}$ are nonempty \pm -product-one subsequences of length < n. Thus, by our assumption, both $|T'_1 \cdot T'_2|$ and $|S_0 \cdot (T'_1 \cdot T'_2)^{[-1]}|$ are even, a contradiction to the fact that $|S_0| = n$ is odd. Therefore T_1, T_2 are product-one free and $\Pi(T_1) \cap \Pi(T_2) = \{\sigma(T_1)\}$, whence $|\pi(T_1)| \geq |T_1|$ and $|\pi(T_2)| \geq |T_2|$ by Lemma 5.3.

It follows that

$$n - 1 \ge |\Pi(T_1) \cup \Pi(T_2)| = |\Pi(T_1)| + |\Pi(T_2)| - |\Pi(T_1) \cap \Pi(T_2)|$$

$$\ge |T_1| + |T_2| - 1 = n - 1,$$

whence $|\Pi(T_1)| = |T_1|$, $|\Pi(T_2)| = |T_2|$, and $\Pi(T_1) \setminus \{\sigma(T_1)\} = G \setminus \Pi(T_2)$. Thus by Lemma 5.3 again, we have $|\operatorname{supp}(T_1)| = |\operatorname{supp}(T_2)| = 1$, which implies that there exist $g_1, g_2 \in G$ with $\operatorname{ord}(g_1) > |T_1|$ and $\operatorname{ord}(g_2) > |T_2|$ such that $T_1 = g_1^{[|T_1|]}$ and $T_2 = g_2^{[|T_2|]}$. By symmetry, we may assume that $|T_1| < |T_2|$. Thus $|T_2| > n/2$ and hence $\operatorname{ord}(g_2) = n$. Let $r \in [1, n-1]$ such that $g_1 = g_2^r$. Then $\sigma(T_1) = \sigma(T_2)$ implies $|T_2| = n - |T_1| \equiv r|T_1| \pmod{n}$. Note that

$$\Pi(T_2) = \{g_2^i \colon i \in [1, |T_2|]\} \text{ and } \Pi(T_1) = \{g_2^{ir} \colon i \in [1, |T_1|]\}.$$

It follows by $\Pi(T_1) \setminus {\sigma(T_1)} = G \setminus \Pi(T_2)$ that

$$\Pi(T_1) = \{g_2^{ir} \colon i \in [1, |T_1|]\} = \{g_2^i \colon i \in [|T_2|, n-1]\},\$$

whence $r \in [|T_2|, n-1]$ and r > n/2. Assume to the contrary that $r \neq n-1$. Then there exists $t \in [2, |T_1|]$ such that $g_2^{tr} = g_2^{n-1}$ and $g_2^{(t-1)r} = g_2^{n-1-r} \in \Pi(T_1)$, whence $n-r-1 \ge |T_2| > n/2$. Thus n > r+(n-r-1) > n/2+n/2 = n, a contradiction. Therefore r = n-1 and hence $S_0 = (g_2^{-1})^{[k]} \cdot g_2^{[n-k]}$, where $k = |T_1| \in [1, n-1]$.

Now we showed $S_0 = g^{[k]} \cdot (g^{-1})^{[n-k]}$, where $k \in [0, n]$ and $g \in G$ with $\operatorname{ord}(g) = n$. Since S_0 is chosen arbitrary, we obtain $\operatorname{supp}(S) = \operatorname{supp}(S_0)$ and hence $S = g^{[k_1]} \cdot (g^{-1})^{[|S|-k_1]}$, where $k_1 \in [0, |S|]$.

3. The proof of Theorem 1

Throughout the whole section, we consider the dihedral group $D_{2n} := \langle x, y : x^2 = y^n = 1, xy = y^{-1}x \rangle$, and let $H = \langle y \rangle$ and $N = D_{2n} \setminus H$, where $n \geq 3$.

Lemma 10 ([20], Theorem 1.3). Let S be a product-one free sequence of length n over the dihedral group D_{2n} , where $n \ge 3$. If $|S_N| \ge 2$, then n = 3 and $S = x \cdot xy \cdot xy^2$.

Lemma 11. Let $n \geq 3$ be a positive integer. Then

$$\mathbf{s}_{[1,n]}(D_{2n}) = n+1.$$

PROOF. It is easy to see that $W = x \cdot y^{[n-1]}$ is a product-one free sequence of length n over D_{2n} . Thus $\mathbf{s}_{[1,n]}(D_{2n}) \ge n+1$. Let S be a sequence of length n+1 over D_{2n} . It suffices to show S has a product-one subsequence T of length $1 \le |T| \le n$.

If $|S_H| \ge n$, then the assertion follows by Lemma 4.1. If $|S_H| \le n - 1$, then $|S_N| = |S| - |S_H| \ge 2$. Assume to the contrary that S has no productone subsequence T of length $1 \le |T| \le n$. Then $1_G \notin \operatorname{supp}(S)$. Let W be a subsequence of S with length n such that $|W_N| \ge 2$. It follows from Lemma 10 that n = 3 and $W = x \cdot xy \cdot xy^2$. Set $S \cdot W^{[-1]} = y^{\alpha}$, where $\alpha \in [1, 2]$. Therefore $x \cdot y^{\alpha} \cdot xy^{\alpha}$ is a product-one subsequence of length n, a contradiction.

Lemma 12. If S is a \pm -product-one sequence over D_{2n} with $|S_N| \ge 1$, where $n \ge 3$, then S is a product-one sequence.

PROOF. Since S is a \pm -product-one sequence, we obtain $|S_N|$ is even. Suppose $S = xy^{\alpha_1} \cdot \ldots \cdot xy^{\alpha_{2u}} \cdot y^{\beta_1} \cdot \ldots \cdot y^{\beta_k}$, where $u \in \mathbb{N}$, $k \in \mathbb{N}_0$, and $\alpha_1, \ldots, \alpha_{2u}, \beta_1, \ldots, \beta_k \in \mathbb{Z}$. Note that $(xy^{\alpha_i})^{-1} = xy^{\alpha_i}$ for every $i \in [1, 2u]$. After renumbering if necessary, there exists $v \in [1, k]$ such that

$$S' = xy^{\alpha_1} \cdot \ldots \cdot xy^{\alpha_{2u}} \cdot y^{\beta_1} \cdot \ldots \cdot y^{\beta_v} \cdot y^{-\beta_{v+1}} \cdot \ldots \cdot y^{-\beta_k}$$

is a product-one sequence. It follows from $\pi(S) = \pi(S')$ that S is also a product-one sequence.

The following proposition is crucial in the proof of Theorem 1.

Proposition 13. Let n be an odd integer with $n \geq 3$. Then

$$\mathsf{s}_{n\mathbb{N}}(D_{2n}) = 2n + \lfloor \log_2 n \rfloor.$$

PROOF. Let $W = x^{[2n-1]} \cdot \prod_{i=0}^{\bullet \lfloor \log_2 n \rfloor - 1} y^{2^i}$ be a sequence of length $2n + \lfloor \log_2 n \rfloor - 1$ over D_{2n} . Since *n* is odd, we obtain *W* has no nonempty productone subsequence *T* of length $|T| \equiv 0 \pmod{n}$. Thus $\mathbf{s}_{n\mathbb{N}}(D_{2n}) \geq 2n + \lfloor \log_2 n \rfloor$.

Let S be a sequence of length $2n + \lfloor \log_2 n \rfloor$. It suffices to show S has a product-one subsequence of length n or 2n. If S_H has a product-one subsequence of length n, then we are done. Thus we may assume that S_H has no product-one subsequence of length n. It follows from Lemma 5.2 that

$$|\Pi_{n-2}(S_H)| \ge |S_H| - (n-1) \tag{1}$$

and by Lemma 4.2 that $|S_H| \leq 2n-2$, which implies $|S_N| \geq \lfloor \log_2 n \rfloor + 2 \geq 3$.

By changing the generators if necessary, we may assume that $\mathbf{v}_x(S_N) = \mathbf{h}(S_N)$. If $\mathbf{h}(S_N) = 1$, then S_N is squarefree and hence $|\Pi_2(S_N)| \ge |S_N| - 1$. In view of Equation (1), we have $|\Pi_2(S_N)| + |\Pi_{n-2}(S_H)| \ge |S_N| - 1 + |S_H| - (n-1) = n + \lfloor \log_2 n \rfloor > |H|$. Note that $\Pi_2(S_N) \subset H$. It follows from Lemma 3 that

$$\Pi_n(S) \supset \Pi_2(S_N) \cdot \Pi_{n-2}(S_H) = H,$$

which implies that S has a product-one subsequence of length n.

Now suppose $h(S_N) = v_x(S_N) \ge 2$. Let $\phi: D_{2n} \to D_{2n}$ be a map defined by $\phi(xy^{\alpha}) = y^{\alpha}$ and $\phi(y^{\alpha}) = y^{\alpha}$ for all $\alpha \in [0, n-1]$. Since $\phi(D_{2n}) = H$ is abelian, for every sequence T over H, $\pi(T)$ has only one element and we denote such an element by $\sigma(T)$, whence $\pi(T) = \{\sigma(T)\}$. We proceed by the following claim. **Claim A.** If either $gcd(\phi(S_N), S_H)$ is nonempty or S has a \pm -product-one subsequence T of odd length such that $|T| \leq n$, then S has a product-one subsequence of length n or 2n.

Proof of Claim A. We distinguish two cases depending on our assumption.

Case 1: The sequence $gcd(\phi(S_N), S_H)$ is nonempty.

Then $T_0 = x \cdot y^{\alpha} \cdot xy^{\alpha}$ is a product-one subsequence of S, where y^{α} is a term of $gcd(\phi(S_N), S_H)$. If n = 3, then we are done. Now suppose $n \ge 5$. Set

$$(S \cdot T_0^{[-1]})_N = U_1^{[2]} \cdot W_1$$
 and $(S \cdot T_0^{[-1]})_H = U_2^{[2]} \cdot E \cdot E^{-1} \cdot W_2$,

where U_1, U_2, E, W_1, W_2 are subsequences such that W_1, W_2 are squarefree and W_2 has no subsequence of length 2. It follows that $|W_1| \le n$ and $|W_2| \le \frac{n+1}{2}$, which implies that

$$2|U_1|+2|U_2|+2|E| = |S|-|T_0|-|W_1|-|W_2| \ge (n-1)/2 + \lfloor \log_2 n \rfloor - 3 > 0.$$
(2)

Let X be a maximal subsequence of $gcd(\phi(W_1), W_2)$ with even length. Then $|gcd(\phi(W_1) \cdot X^{[-1]}, W_2 \cdot X^{[-1]})| \leq 1$ and $X \cdot \phi^{-1}(X)$ is a product of productone subsequences of length 4. It follows that $|W_1| + |W_2| - 2|X| \leq n + 1$, which implies $|T_0| + 2|U_1| + 2|U_2| + 2|E| + 2|X| \geq 2n + \lfloor \log_2 n \rfloor - (n+1) \geq n$. In view of both $|T_0|$ and n are odd, it follows from Equation (2) that there exist subsequences $U'_1 \mid U_1, U'_2 \mid U_2, E' \mid E$, and $X' \mid X$ such that

$$Y := T \cdot (U_1')^{[2]} \cdot (U_2')^{[2]} \cdot E' \cdot (E')^{-1} \cdot X' \cdot \phi^{-1}(X')$$

is a \pm -product-one subsequence of length n. Since $|(T_0)_N| \ge 1$, Lemma 12 implies that Y is a product-one subsequence of length n.

Case 2: The sequence $gcd(\phi(S_N), S_H)$ is empty and there is a \pm -product-one subsequence T of S with odd length such that $|T| \leq n$.

Among all the choices of T, we may assume that T is such a sequence with minimal length.

Suppose |T| < n. Let $T_0 = T$ if $|T_N| \ge 1$ and let $T_0 = T \cdot x^{[2]}$ if $|T_N| = 0$. Set

 $(S \cdot T_0^{[-1]})_N = U_1^{[2]} \cdot W_1$ and $(S \cdot T_0^{[-1]})_H = U_2^{[2]} \cdot W_2$,

where U_1, U_2, W_1, W_2 are sequences such that W_1, W_2 are squarefree. Since $gcd(\phi(S_N), S_H)$ is empty, we obtain $|W_1| + |W_2| = |\phi(W_1)| + |W_2| \le n$, which

implies that $|T_0| + 2|U_1| + 2|U_2| \ge |S| - n \ge n$. In view of both $|T_0|$ and n are odd, there exist subsequences U'_1 of U_1 and U'_2 of U_2 such that $T_0 \cdot (U'_1)^{[2]} \cdot (U'_2)^{[2]}$ is a \pm -product-one subsequence of length n. Since $|(T_0)_N| \ge 1$, it follows by Lemma 12 that $T_0 \cdot (U'_1)^{[2]} \cdot (U'_2)^{[2]}$ is a product-one subsequence of length n.

Suppose |T| = n. If $|T_N| \ge 1$, then Lemma 12 implies that T is a productone subsequence of length n. If $|T_N| = 0$, then $|S_H| \ge |T| = n$. By the minimality of |T|, we obtain S_H has no \pm -product-one subsequence T' of odd length with |T'| < n. Thus Lemma 9.2 implies that $S_H = g^{[k]} \cdot (g^{-1})^{[|S_H|-k]}$, where $k \in [0, |S|]$ and $g = y^{\alpha}$ with $gcd(\alpha, n) = 1$.

If $|\operatorname{supp}(S_N)| = 1$, say $S_N = (xy^{\beta})^{\lfloor |S_N| \rfloor}$, where $\beta \in [0, n-1]$, then there exist $k_1 \in [1, \lfloor |S_N|/2 \rfloor]$, $k_2 \in [0, \lfloor k/2 \rfloor]$, and $k_3 \in [0, \lfloor (|S_H| - k)/2 \rfloor]$ such that $(xy^{\beta})^{\lfloor 2k_1 \rfloor} \cdot g^{\lfloor 2k_2 \rfloor} \cdot (g^{-1})^{\lfloor 2k_3 \rfloor}$ is a product-one subsequence of length 2n.

Suppose $|\operatorname{supp}(S_N)| \geq 2$, say $xg^{\beta_1}, xg^{\beta_2} \in \operatorname{supp}(S_N)$, where $\beta_1, \beta_2 \in [0, n-1]$ with $\beta_1 < \beta_2$. If $\beta_2 - \beta_1$ is even, then let $k_1 \in [0, k]$ and $k_2 \in [0, |S_H| - k]$ such that $k_1 + k_2 = n - (\beta_2 - \beta_1) \leq n - 2$, whence $W := xg^{\beta_1} \cdot (g^{-1})^{[k_2]} \cdot xg^{\beta_2} \cdot g^{[k_1]}$ is a product-one subsequence of odd length $2 + n - (\beta_2 - \beta_1) \leq n$. The minimality of |T| implies that W is a product-one subsequence of length n. If $\beta_2 - \beta_1$ is odd, then let $k_1 \in [0, k]$ and $k_2 \in [0, |S_H| - k]$ such that $k_1 + k_2 = \beta_2 - \beta_1$, whence $W := xg^{\beta_1} \cdot g^{[k_2]} \cdot xg^{\beta_2} \cdot (g^{-1})^{[k_1]}$ is a product-one subsequence of odd length $2 + (\beta_2 - \beta_1) \leq n$. The minimality of |T| implies that W is a product-one subsequence of length n.

 \Box [End of Proof of Claim A.]

By Claim A and Lemma 9.1, we may assume that $|S_H| \leq n-1$ and $gcd(\phi(S_N), S_H)$ is empty. Since $|S_N| \geq n + \lfloor \log_2 n \rfloor + 1$, it follow by using Lemma 5.1 on $\phi(S_N \cdot x^{[-h(S_N)]})$ repeatedly, we can find subsequences P_1, \ldots, P_ℓ of $S_N \cdot x^{[-h(S_N)]}$ with $P_1 \cdot \ldots \cdot P_\ell$ dividing $S_N \cdot x^{[-h(S_N)]}$ such that $\phi(P_i)$ are all product-one subsequences of length $|P_i| \leq h(S_N)$ and

 $\mathsf{h}(S_N) + |P_1| + \ldots + |P_\ell| \ge \lfloor \log_2 n \rfloor + 1.$

Without loss of generality, we may assume that $\ell \in \mathbb{N}_0$ is the minimal integer such that

$$\mathsf{h}(S_N) + |P_1| + \ldots + |P_\ell| \ge \lfloor \log_2 n \rfloor + 1,$$

whence

$$\lfloor \log_2 n \rfloor + 1 \leq \mathsf{h}(S_N) + |P_1| + \ldots + |P_\ell| \leq \lfloor \log_2 n \rfloor + 1 + \mathsf{h}(S_N).$$

Suppose

$$S_N = x^{[\mathsf{h}(S_N)]} \cdot P_1 \cdot \ldots \cdot P_\ell \cdot U_1^{[2]} \cdot W_1 \quad \text{and} \quad S_H = U_2^{[2]} \cdot W_2,$$

where U_1, U_2, W_1, W_2 are subsequences such that W_1, W_2 are squarefree. It follows from the fact that $gcd(\phi(S_N), S_H)$ is empty that $|W_1 \cdot W_2| \leq n$. By using Lemma 6, we can find subsequences L_1, \ldots, L_k of $W_1 \cdot W_2$ such that $\phi(L_i)$ are \pm -product-one sequences with $|L_i| \leq \lfloor \log_2 n \rfloor + 1$ and $\phi(W_1 \cdot W_2 \cdot (L_1 \cdot \ldots \cdot L_k)^{[-1]})$ has no \pm -product-one sequence, which implies

$$|W_1 \cdot W_2 \cdot (L_1 \cdot \ldots \cdot L_k)^{[-1]}| \leq \lfloor \log_2 n \rfloor.$$

Therefore

$$|x^{[\mathsf{h}(S_N)]} \cdot P_1 \cdot \ldots \cdot P_\ell \cdot U_1^{[2]} \cdot U_2^{[2]} \cdot L_1 \cdot \ldots \cdot L_k| \ge 2n.$$
(3)

Set $L_i = L_i^{(1)} \cdot L_i^{(2)}$ such that $\sigma(\phi(L_i^{(1)})) = \sigma(\phi(L_i^{(2)}))$ for every $i \in [1, k]$. Now we distinguish two cases.

Suppose there exists $i \in [1, k]$ such that $|(L_i)_H|$ is odd. By symmetry we may assume $|(L_i^{(1)})_N| \ge |(L_i^{(2)})_N|$. Since $|(L_i^{(1)})_N| - |(L_i^{(2)})_N| \le \lfloor \log_2 n \rfloor + 1$, we have

$$|(L_i^{(1)})_N| - |(L_i^{(2)})_N| \le h(S_N) + |P_1| + \ldots + |P_\ell|.$$

Let $J \subset [1, \ell]$ be a minimal subset (note that J could be empty) such that

$$|(L_i^{(1)})_N| - |(L_i^{(2)})_N| \le \mathsf{h}(S_N) + \sum_{j \in J} |P_j|$$

It follows by the minimality of J that

$$0 \le d := |(L_i^{(1)})_N| - |(L_i^{(2)})_N| - \sum_{j \in J} |P_j| \le \mathsf{h}(S_N) \,.$$

Let $(L_i^{(1)})_N = h_1 \cdot \ldots \cdot h_{|(L_i^{(1)})_N|}$ and $(L_i^{(2)})_N \cdot \prod_{j \in J}^{\bullet} P_j \cdot x^{[d]} = f_1 \cdot \ldots \cdot f_{|(L_i^{(1)})_N|}$, where $h_1, \ldots, h_{|(L_i^{(1)})_N|}, f_1, \ldots, f_{|(L_i^{(1)})_N|} \in N$. Then

$$\begin{split} h_{1} \cdot f_{1} \cdot \ldots \cdot h_{|(L_{i}^{(1)})_{N}|} \cdot f_{|(L_{i}^{(1)})_{N}|} \cdot \sigma(\phi((L_{i}^{(1)})_{H})) \cdot \sigma(\phi((L_{i}^{(2)})_{H}))^{-1} \\ = &\sigma(\phi((L_{i}^{(1)})_{N})) \cdot \sigma(\phi((L_{i}^{(2)})_{N} \cdot \prod_{j \in J}^{\bullet} P_{j} \cdot x^{[d]}))^{-1} \cdot \sigma(\phi((L_{i}^{(1)})_{H})) \cdot \sigma(\phi((L_{i}^{(2)})_{H}))^{-1} \\ = &\sigma(\phi((L_{i}^{(1)})_{N})) \cdot \sigma(\phi((L_{i}^{(2)})_{N}))^{-1} \cdot \sigma(\phi((L_{i}^{(1)})_{H})) \cdot \sigma(\phi((L_{i}^{(2)})_{H}))^{-1} \\ = &\sigma(\phi(L_{i}^{(1)})) \cdot \sigma(\phi(L_{i}^{(2)}))^{-1} \\ = &1_{G} \,, \end{split}$$

which implies that $L_i \cdot x^{[d]} \cdot \prod_{j \in J}^{\bullet} P_j$ is a \pm -product-one subsequence of odd length $|(L_i)_H| + 2|(L_i^{(1)})_N| \leq 2|L_i| \leq 2\lfloor \log_2 n \rfloor + 2$. Thus $|L_i \cdot x^{[d]} \cdot \prod_{j \in J}^{\bullet} P_j| \leq 2\lfloor \log_2 n \rfloor + 1 \leq n$ and hence Claim A implies that S has product-one subsequence of length n or 2n.

Suppose for all $i \in [1, k]$, we have $|(L_i)_H|$ is even. Let $a_i = |(L_i^{(1)})_N| - |(L_i^{(2)})_N|$ for all $i \in [1, k]$. Then $|a_i| \leq \lfloor \log_2 n \rfloor + 1$ and by Lemma 8 there exists a subset $I \subset [1, k]$ such that $0 \leq \sum_{i \in I} a_i - \sum_{j \in [1, k] \setminus I} a_j \leq \lfloor \log_2 n \rfloor + 1$. Let $L'_i = L_i^{(1)}$ and $L''_i = L_i^{(2)}$ if $i \in I$; and let $L'_i = L_i^{(2)}$ and $L''_i = L_i^{(1)}$ if $i \in [1, k] \setminus I$. Set $L' = \prod_{i \in [1, k]}^{\bullet} L'_i$ and $L'' = \prod_{i \in [1, k]}^{\bullet} L''_i$. Then

$$0 \le \sum_{i \in I} a_i - \sum_{j \in [1,k] \setminus I} a_j = |(L')_N| - |(L'')_N|$$

$$\le \lfloor \log_2 n \rfloor + 1 \le \mathsf{h}(S_N) + |P_1| + \ldots + |P_\ell|.$$

Let $J_1 \subset [1, \ell]$ be a minimal subset (note that J_1 could be empty) such that

$$|(L')_N| - |(L'')_N| \le h(S_N) + \sum_{j \in J_1} |P_j|.$$

It follows by the minimality of J_1 that

$$0 \le d_1 := |(L')_N| - |(L'')_N| - \sum_{j \in J_1} |P_j| \le \mathsf{h}(S_N) \,.$$

Again by Lemma 8, there exists a subset $J_2 \subset [1, \ell] \setminus J_1$ such that

$$\left| d_1 + \sum_{j \in J_2} |P_j| - \sum_{j \in [1,\ell] \setminus (J_1 \cup J_2)} |P_j| \right|$$
$$= \left| |(L')_N| + \sum_{j \in J_2} |P_j| - |(L'')_N| - \sum_{j \in [1,\ell] \setminus J_2} |P_j| \right| \le \mathsf{h}(S_N) \, .$$

By symmetry of (L', J_2) and $(L'', [1, \ell] \setminus J_2)$, we may assume that

$$d := |(L')_N| + \sum_{j \in J_2} |P_j| - |(L'')_N| - \sum_{j \in [1,\ell] \setminus J_2} |P_j| \ge 0.$$

Therefore

$$d + |P_1| + \ldots + |P_{\ell}|$$

$$\leq \begin{cases} \lfloor \log_2 n \rfloor + 1 + \mathsf{h}(S_N) \leq 2 \lfloor \log_2 n \rfloor + 1 \leq n, & \text{if } \mathsf{h}(S_N) < \lfloor \log_2 n \rfloor + 1; \\ d = |(L')_N| - |(L'')_N| \leq \lfloor \log_2 n \rfloor + 1 \leq n, & \text{if } \mathsf{h}(S_N) \geq \lfloor \log_2 n \rfloor + 1. \end{cases}$$

$$(4)$$

Let $P' = \prod_{j \in J_2}^{\bullet} P_j$ and $P'' = \prod_{j \in [1,\ell] \setminus J_2}^{\bullet} P_j$. Suppose $(L')_N \cdot P' = h_1 \cdot \dots \cdot h_{\ell_0}$ and $(L'')_N \cdot P'' \cdot x^{[d]} = f_1 \cdot \dots \cdot f_{\ell_0}$, where $\ell_0 = |(L')_N \cdot P'|$ and $h_1, \dots, h_{\ell_0}, f_1, \dots, f_{\ell_0} \in N$. Therefore

$$\begin{split} h_1 \cdot f_1 \cdot \ldots \cdot h_{\ell_0} \cdot f_{\ell_0} \cdot \sigma(\phi((L')_H)) \cdot \sigma(\phi((L'')_H))^{-1} \\ = &\sigma(\phi((L')_N \cdot P') \cdot \sigma((L'')_N \cdot P'')^{-1} \cdot \sigma(\phi((L')_H)) \cdot \sigma(\phi((L'')_H))^{-1} \\ = &\sigma(\phi((L')_N)) \cdot \sigma(\phi((L'')_N))^{-1} \cdot \sigma(\phi((L')_H)) \cdot \sigma(\phi((L'')_H))^{-1} \\ = &\sigma(\phi(L')) \cdot \sigma(\phi(L''))^{-1} \\ = &1_G \,, \end{split}$$

which implies that $W := L' \cdot L'' \cdot x^{[d]} \cdot P' \cdot P''$ is a \pm -product-one subsequence of even length. Note that $|W_1 \cdot W_2| \leq n$. In view of Equations (4) and (3), we have

$$|W| \le |W_1 \cdot W_2| + d + \sum_{i=1}^{\ell} |P_i| \le 2n \text{ and } |W \cdot x^{[h(S_N) - d]} \cdot U_1^{[2]} \cdot U_2^{[2]}| \ge 2n.$$

Therefore there exist $k_1 \in [0, \lfloor h(S_N) - d/2 \rfloor], U'_1 \mid U_1$, and $U'_2 \mid U_2$ such that $W \cdot x^{[2k_1]} \cdot U'^{[2]}_1 \cdot U'^{[2]}_2$ is a \pm -product-one sequence of length 2n, which is also a product-one sequence by Lemma 12 and the fact that $|S_H| \leq n-1$. \Box

Proof of Theorem 1. We distinguish three cases.

Suppose d is odd and n|d. Set d = kn, where $k \in \mathbb{N}$. Thus n and k are both odd. Let $W = x^{[2d-1]} \cdot \prod_{i \in [0, \lfloor \log_2 n \rfloor - 1]} y^{2^i}$ be a sequence of length $2d + \lfloor \log_2 n \rfloor - 1$ over D_{2n} . It is easy to see that W has no nonempty product-one subsequence T of length $|T| \equiv 0 \pmod{d}$. Hence, $\mathbf{s}_{d\mathbb{N}}(D_{2n}) \geq 2d + \lfloor \log_2 n \rfloor$. Let S be a sequence of length $2d + \lfloor \log_2 n \rfloor$ over D_{2n} . It suffices to show that S has a product-one subsequence of length d or 2d. By using Lemma 4.4 on S repeatedly, we have a decomposition

$$S = T_1 \cdot \ldots \cdot T_{k-1} \cdot S_1,$$

where each T_i is a product-one subsequence of length 2n and S_1 is a sequence of length $2n + \lfloor \log_2 n \rfloor$. It follows from Proposition 13 that S_1 has a productone subsequence S_2 of length n or 2n. If $|S_2| = 2n$, then $T_1 \cdot \ldots \cdot T_{k-1} \cdot S_2$ is a product-one subsequence of length 2d. If $|S_2| = n$, then $T_1 \cdot \ldots \cdot T_{\frac{k-1}{2}} \cdot S_2$ is a product-one subsequence of length d.

Suppose d is even and n|d. Set d = kn, where $k \in \mathbb{N}$. Let $W = 1_G^{[d-1]} \cdot x \cdot y^{[n-1]}$ be a sequence of length d + n - 1 over D_{2n} . It is easy to see that W has no nonempty product-one subsequence T of length $|T| \equiv 0 \pmod{d}$. Combining the definitions of $\mathbf{s}_{d\mathbb{N}}(D_{2n})$ and $\mathbf{s}_{\{d\}}(D_{2n})$ yields that $\mathbf{s}_{\{d\}}(D_{2n}) \geq \mathbf{s}_{d\mathbb{N}}(D_{2n}) \geq d + n$. Let S be a sequence of length d + n over D_{2n} . It suffices to show S has a product-one subsequence of length d. If k is even, then by using Lemma 4.4 on S repeatedly we have a decomposition

$$S = T_1 \cdot T_2 \cdot \ldots \cdot T_{\frac{k}{2}} \cdot T'$$

where each T_i is a product-one subsequence of length 2n and T' is a sequence of length n. Therefore $S \cdot (T')^{[-1]}$ is a product-one subsequence of length d. If k is odd, then n is even and by using Lemma 4.5 on S repeatedly we have a decomposition

$$S = T_1 \cdot T_2 \cdot \ldots \cdot T_k \cdot T',$$

where each T_i is a product-one subsequence of length n and T' is a sequence of length n. Therefore $S \cdot (T')^{[-1]}$ is a product-one subsequence of length d.

Suppose gcd(n, d) = 1. Let $W = x \cdot y^{[nd-1]}$ be a sequence of length nd - 1over D_{2n} . It is easy to see that W has no nonempty product-one subsequence T of length $|T| \equiv 0 \pmod{d}$. Hence, $\mathbf{s}_{d\mathbb{N}}(D_{2n}) \geq nd+1$. Let S be a sequence of length nd+1 over D_{2n} . It suffices to show S has a product-one subsequence T of length $|T| \equiv 0 \pmod{d}$. By using Lemma 11 on S repeatedly, we have a decomposition

$$S = T_1 \cdot \ldots \cdot T_d \cdot T,$$

where each T_i is a product-one subsequence of length $|T_i| \in [1, n]$ and T is a nonempty sequence. Since $|T_1| \cdot \ldots \cdot |T_d|$ is a sequence over \mathbb{Z} of length d, it follows by Lemma 4.1 (applied for $\mathbb{Z}/d\mathbb{Z}$) that there exists a subset $I \subset [1, d]$ such that $\sum_{i \in I} |T_i| \equiv 0 \pmod{d}$. Therefore $S_0 := \prod_{i \in I}^{\bullet} T_i$ is a product-one subsequence of length $|S_0| \equiv 0 \pmod{d}$.

4. The proof of Theorem 2

Throughout the whole section, for p, q primes and $s \in [1, q - 1]$ with $\operatorname{ord}_q(s) = p$, we consider the metacyclic group $G_{pq} := C_p \ltimes_s C_q = \langle x, y : x^p =$

 $y^q = 1_{G_{pq}}, yx = xy^s$ and let $H = \langle y \rangle$, $N = G_{pq} \setminus H$. We must have $p \ge 2$ and $p \mid q - 1$. If p = 2, then G_{pq} is a dihedral group of order 2q. We only consider the case $p \ge 3$, which implies $q \ge 2p + 1$. The following lemma will be used in the proof of Theorem 2.

Lemma 14 ([2], Theorem 15). $s_{\{pq\}}(G_{pq}) = pq + p + q - 2.$

Proof of Theorem 2. Let $W = 1_{G_{pq}}^{[\operatorname{gcd}(kp,q)-1]} \cdot x^{[p-1]} \cdot y^{[\operatorname{lcm}(kp,q)-1]}$ be a sequence of length $\operatorname{lcm}(kp,q) + \operatorname{gcd}(kp,q) + p - 3$ over G_{pq} . It is easy to see that W has no nonempty product-one subsequence T of length $|T| \equiv 0 \pmod{kp}$, which implies that $\mathbf{s}_{kp\mathbb{N}}(G_{pq}) \geq \operatorname{lcm}(kp,q) + \operatorname{gcd}(kp,q) + p - 2$. Let S be a sequence of length $\operatorname{lcm}(kp,q) + \operatorname{gcd}(kp,q) + p - 2$ over G_{pq} . It suffices to show S has a nonempty subsequence T of length $|T| \equiv 0 \pmod{kp}$.

Set $d = \operatorname{lcm}(kp,q) + \operatorname{gcd}(kp,q) - 1$. If $|S_N| \leq p - 1$, then $|S_H| \geq d$. It follows from Theorem A that S_H has a nonempty product-one subsequence T of length $|T| \equiv 0 \pmod{kp}$. If q divides k, then |S| = kp + p + q - 2. By using Lemma 14 on S repeatedly, we have a decomposition

$$S = T_1 \cdot \ldots \cdot T_{\frac{k}{q}} \cdot S_1,$$

where each T_i is a product-one subsequence of length pq and S_1 is a sequence of length p+q-2. Therefore $S \cdot S_1^{[-1]}$ is a product-one subsequence of length kp.

Now we can suppose $|S_N| \geq p$ and gcd(q,k) = 1, which imply |S| = kpq + p - 1 and $|S_H| \leq kpq - 1$. Let $\psi: G_{pq} \to \langle x \rangle$ be the homomorphism defined by $\psi(x^{\alpha}y^{\beta}) = x^{\alpha}$, where $\alpha, \beta \in \mathbb{N}$. Then ker $\psi = H$. Since $\langle x \rangle \cong C_p$, it follows from Lemma 4.2 that every sequence of length 2p-1 over G_{pq} has a subsequence T of length p such that $\pi(T) \cap H \neq \emptyset$. Therefore from S we can choose product-one subsequences A_1, \ldots, A_r of length p and subsequences F_1, \ldots, F_ℓ of length p with $1_{G_{pq}} \notin \pi(F_i)$ and $\pi(F_i) \cap H \neq \emptyset$ for every $i \in [1, \ell]$ such that

 $A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell \mid S \text{ and } \mid S \cdot (A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell)^{[-1]} \mid \leq 2p - 2,$

where $r, \ell \in \mathbb{N}_0$. Thus

 $|S \cdot (A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell)^{[-1]}| \equiv |S| \equiv p - 1 \pmod{p},$

which implies that $|A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell| = kpq$ and $r + \ell = kq$.

If $r \geq k$, then $A_1 \cdot \ldots \cdot A_k$ is a product-one subsequence of length kp. Otherwise $r \leq k-1$ and hence $\ell \geq q$. Since $|S_N| \geq p$, there exists $T \in \{A_1, \ldots, A_r, F_1, \ldots, F_\ell\}$ such that $|T_N| \geq 1$. After renumbering if necessary, we may assume that $T \notin \{F_1, \ldots, F_{q-1}\}$. Suppose $T = g_1 \cdot \ldots \cdot g_{p-1} \cdot x^{\alpha} y^{\beta}$, where $g_1, \ldots, g_{p-1} \in G_{pq}$ and $x^{\alpha} y^{\beta} \in \operatorname{supp}(T_N)$, such that $g_1 \ldots g_{p-1} x^{\alpha} y^{\beta} = y^m$ for some $m \in \mathbb{N}_0$, and suppose $y^{m_i} \in \pi(F_i)$ for every $i \in [1, q-1]$, where $m_i \in [1, q-1]$. Thus $y^{m_i} \neq y^{m_i s^{\alpha}}$ for every $i \in [1, q-1]$ and

$$y^{m} \prod_{i=1}^{q-1} \{y^{m_{i}}, y^{m_{i}s^{\alpha}}\}$$

$$= \left\{ y^{m} \prod_{i \in I} y^{m_{i}} \prod_{i \in [1,q-1] \setminus I} y^{m_{i}s^{\alpha}} \colon I \subset [1,q-1] \right\}$$

$$= \left\{ g_{1} \dots g_{p-1} \left(\prod_{i \in [1,q-1] \setminus I} y^{m_{i}} \right) x^{\alpha} y^{\beta} \prod_{i \in I} y^{m_{i}} \colon I \subset [1,q-1] \right\}$$

$$\subset \pi (T \cdot y^{m_{1}} \dots \cdot y^{m_{q-1}})$$

$$\subset \pi (T \cdot F_{1} \cdot \dots \cdot F_{q-1}).$$

It follows by the Cauchy-Davenport Theorem (see [21, pp 44-45]) that

$$|y^m \prod_{i=1}^{q-1} \{y^{m_i}, y^{m_i s^\alpha}\}| \ge \min\{q, 1+2(q-1)-(q-1)\} = q,$$

which implies that $H \subset \pi(T \cdot F_1 \cdot \ldots \cdot F_{q-1})$. Thus $1_{G_{pq}} \in \pi(A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell)$ and hence $A_1 \cdot \ldots \cdot A_r \cdot F_1 \cdot \ldots \cdot F_\ell$ is a product-one subsequence of length kpq.

Acknowledgments

This research was supported in part by NSF of China (Grant No. 11671153 and Grant No. 12001331) and by the Austrian Science Fund FWF (Project Number P33499-N).

References

 S. Adhikari, Y. Chen, J. Friedlander, S.V. Konyagin, and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.

- J. Bass, Improving the Erdős-Ginzburg-Ziv theorem for some non-abelian groups, J. Number Theory 126 (2007), 217-236.
- [3] R. Chi, S. Ding, W. Gao, A. Geroldinger, and W.A. Schmid, On zerosum subsequences of restricted size IV, Acta Math. Hungar. 107 (2005), 337 - 344.
- [4] K. Cziszter and M. Domokos, *The Noether number for the groups with a cyclic subgroup of index two*, J. Algebra **399** (2014), 546 560.
- [5] K. Cziszter and M. Domokos, On the generalized Davenport constant and the Noether number, Central European J. Math. 11 (2013), 1605 -1615.
- [6] K. Cziszter, M. Domokos, and A. Geroldinger, The interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics, in: Multiplicative Ideal Theory and Factorization Theory, Springer 2016, 43 - 95.
- [7] K. Cziszter, M. Domokos, and I. Szöllősi, The Noether numbers and the Davenport constants of the groups of order less than 32, J. Algebra 510 (2018), 513 - 541.
- [8] W. Gao, On zero sum subsequences of restricted size III, Ars Combin.
 61 (2001), 65 72.
- [9] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337 - 369.
- [10] W. Gao, D. Han, J. Peng, and F. Sun, On zero-sum subsequences of length kexp(G), J. Combin. Theory Ser. A 125 (2014), 240 - 253.
- [11] W. Gao, Y. Li, J. Peng, and G. Wang, A unifying look at zero-sum invariants, Int. J. Number Theory 14(2018), 705 - 711.
- W. Gao and Z. Lu, The Erdős-Ginzburg-Ziv theorem for dihedral groups, J. Pure Appl. Algebra 212 (2008), 311-319.
- [13] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1 - 86.

- [14] A. Geroldinger, D. Grynkiewicz, and W. Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar. 131 (2011), 323 - 345.
- [15] A. Geroldinger and D.J. Grynkiewicz, The large Davenport constant I: Groups with a cyclic index 2 subgroup, J. Pure Appl. Algebra 217 (2013), 863 – 885.
- [16] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol.278, Chapman and Hall/CRC, 2006.
- [17] D. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30, Springer, Cham, 2013.
- [18] D. Grynkiewicz, The large Davenport constant II: General upper bounds, J. Pure Appl. Algebra 217 (2013), 2221-2246.
- [19] S. Kubertin, Zero-sums of length kq in \mathbb{Z}_q^d , Acta Arith. **116** (2005), 145 152.
- [20] F.E.B. Martínez and S. Ribas, Extremal product-one free sequences in Dihedral and Dicyclic groups, Discrete Math. 341 (2018), 570-578.
- [21] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
- [22] J. Oh and Q. Zhong, On Erdős-Ginzburg-Ziv inverse theorems for dihedral and dicyclic groups, Israel J. Math. 238 (2020), 715-743
- [23] J.E. Olson and E.T. White, Sums from a sequence of group elements, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, 1977, pp. 215 - 222.
- [24] Y. Qu and D. Han, An inverse theorem for additive bases, Int. J. Number Theory 12 (2016), 1509 - 1518.