
On product-one sequences with congruence conditions

over non-abelian groups

Kevin Zhaoa,∗, Qinghai Zhongb,c

aDepartment of Mathematics and Statistics, Nanning normal university, Guangxi
530100, China

bInstitute for Mathematics and Scientific Computing, University of Graz, NAWI Graz,
Heinrichstraße 36, 8010 Graz, Austria

cSchool of Mathematics and statistics, Shandong University of Technology, Zibo,
Shandong 255000, China

Abstract

Let G be a finite group. For a positive integer d, let sdN(G) denote the
smallest integer ` such that every sequence S over G of length |S| ≥ ` has a
nonempty product-one subsequence T with |T | ≡ 0 (mod d). In this paper,
we mainly study this invariant for dihedral groups D2n and metacyclic groups
Cp ns Cq.
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1. Introduction

Let G be a finite multiplicative group and let exp(G) = lcm{ord(g) : g ∈
G} be the exponent of G. By a sequence S over G, we mean a finite unordered
sequence with terms from G and repetition allowed. We say S is a product-
one sequence if its terms can be ordered so that their product equals the
identity element of G. In most of the cases, a direct ”zero-sum” problem
asks for the the smallest integer ` ∈ N such that every sequence S over G
with length |S| ≥ ` has a product-one subsequence with prescribed length.
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Let L ⊂ N be nonempty subset and let sL(G) be the smallest ` ∈ N∪{∞}
such that every sequence S over G has a product-one subsequence T with
length |T | ∈ L. Thus the classic zero-sum invariants D(G) = sN(G) (the
Davenport constant), s(G) = s{exp(G)}(G) (the EGZ constant), and η(G) =
s[1,exp(G)](G). The readers may want to consult one of the surveys or mono-
graphs ([9, 16, 13, 17]). Moreover, sL(G) is also investigated for various other
sets (see, e.g. [8, 19, 3, 10, 11]). Among others, A. Geroldinger et al. [14]
introduced sdN(G) for finite abelian groups and obtained the following result.

Theorem A. Let G be a finite abelian group and let d be a positive integer.

1. Suppose G is cyclic. Then

sdN(G) = lcm(|G|, d) + gcd(|G|, d)− 1.

2. Suppose G ∼= Cm ⊕ Cn, where m,n ∈ N with 1 < m|n. Then

sdN(G) = lcm(n, d) + gcd(n, lcm(m, d)) + gcd(m, d)− 2.

In the present paper, we mainly focus on sdN(G) for non-abelian groups.
The study of sequences for non-abelian groups dates back to the 1970s (see
[23]), and fresh impetus came from applications in factorization theory and
invariant theory (see [18, 15, 5, 4, 7]). Diheral groups, dicyclic groups, and
metacyclic groups are the most studied ones. Our main results are the fol-
lowing.

Theorem 1. Let D2n be a dihedral group,where n ≥ 3, and let d be positive
integer. Then

sdN(D2n) =


2d+ blog2 nc, if n | d and d is odd ,

d+ n = s{d}(D2n), if n | d and d is even ,

nd+ 1, if gcd(n, d) = 1 .

Remark: Note that n divides exp(D2n) and exp(D2n) is always even. We
have

sk exp(D2n)N(D2n) = sk exp(D2n)(D2n) = k exp(D2n) + n .

Theorem 2. Let Cp ns Cq = 〈x, y : xp = yq = 1, yx = xys, ordq(s) =
p, and p, q are primes〉 be a metacyclic group. Then

skpN(Cp ns Cq) = lcm(kp, q) + p− 2 + gcd(kp, q) ,

where k ∈ N.
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2. Preliminaries

Our notation and terminology are consistent with [6, 17, 18]. We briefly
gather some key notions and fix notation. Let N denote the set of positive
integers and N0 = N∪{0}. For real numbers a, b ∈ R, we let [a, b] = {x ∈ Z :
a ≤ x ≤ b} be the discrete interval between a and b. For positive integers m
and n, we denote by gcd(m, n) and lcm(m, n) the greatest common divisor
and the least common multiple of m, n respectively. If gcd(n,m) = 1, we let
ordn(m) be the minimal positive integer ` such that g` ≡ 1 (mod n).

Let G be a multiplicatively written finite group with identity 1G ∈ G
and let A,B be two nonempty subsets of G. We denote A · B = {a · b : a ∈
A, b ∈ B}. Let F(G) be the free abelian monoid, multiplicatively written,
with basis G. In combinatorial language, elements of F(G) are called se-
quences over G, which are unordered finite sequences of terms from G with
repetition allowed. In order to distinguish between the group operation in
G and the sequence operation in F(G), we use a bold dot symbol · for the
multiplication in F(G), so G = (G, ·) and F(G) = (F(G), ·). In order to
avoid confusion between exponentiation of the group operation · in G and
exponentiation of the sequence operation · in F(G), we use brackets to de-
note exponentiation in F(G). Thus, for g ∈ G, T ∈ F(G), and k ∈ N, we
have g[k] = g · . . . · g︸ ︷︷ ︸

k

and T [k] = T · . . . · T︸ ︷︷ ︸
k

. Let

S = g1 · . . . · g` =
∏
g∈G

•
g[vg(S)] ∈ F(G)

be a sequence over G. Then vg(S) ∈ N0 is the multiplicity of g in S,

|S| = ` =
∑
g∈G

vg(S) ∈ N0 is the length of S;

h(S) = max{vg(S) : g ∈ G} is the maximum multiplicity of S;

supp(S) = {g ∈ G : vg(S) > 0} ⊆ G is the support of S;

π(S) = {gτ(1) · . . . · gτ(`) ∈ G : τ is a permutation of [1, `]} ⊂ G

is the set of products of S.

If |S| = 0, then we say S is empty and use the convention that π(S) =
{1G}. We denote S−1 = g−11 · . . . · g−1` and SA =

∏•
g∈A g

[vg(A)] for a subset

A ⊂ G. Note that gcd(S1, S2) =
∏•

g∈G g
[min{vg(S1) , vg(S2)}] ∈ F(G) for any
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S1, S2 ∈ F(G). For n ∈ N, the n-products and sequence subproducts of S are
respectfully denoted by

Πn(S) =
⋃

T |S,|T |=n

π(T ) ⊂ G and Π(S) =
⋃
n≥1

Πn(S) ⊂ G .

In addition, we write

Π≤k(S) =
⋃

j∈[1,k]

Πj(S) and Π≥k(S) =
⋃
j≥k

Πj(S).

We say S is

• squarefree if vg(S) ≤ 1 for all g ∈ G;

• a subsequence of W if W is a sequence over G with vg(W ) ≥ vg(S) for
all g ∈ G (Since S divides W in F(G), we denote it by S | W );

• a product-one sequence if 1G ∈ π(S);

• product-one free if 1G 6∈ Π(S);

• a minimal product-one sequence if S is a product-one sequence and
S = T1 ·T2 implies that T1 or T2 is empty, where T1, T2 are two product-
one sequences.

• a ±-product-one sequence if there exist a permutation τ of [1, `] and
εi ∈ {±1} for 1 ≤ i ≤ ` such that gε1τ(1) · g

ε2
τ(2) · . . . · g

ε`
τ(`) = 1G

The following four lemmas collect some well-known results in additive
combinatorics, which we will need later.

Lemma 3 ([21, Lemma 2.2]). Let A, B be two nonempty subsets of a fi-
nite group G. If |A|+ |B| > |G|, then A ·B = G.

Lemma 4. Let Cn be a cyclic group of order n and let D2n be a dihedral
group of order 2n, where n ≥ 3.

1. D(Cn) = sN(Cn) = n and every minimal product-one sequence of length
n over Cn must have the form S = g[n], where g ∈ Cn with ord(g) = n
([16, Theorem 5.1.10.1]).
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2. s{n}(Cn) = 2n−1 (Erdős-Ginzburg-Ziv Theorem, see e.g. [16, Corollary
5.7.5]).

3. D(D2n) = sN(D2n) = n+ 1 ([2, Lemma 4]).

4. s{2n}(D2n) = 3n ([2, Theorem 8]).

5. If n is even, then s{n}(D2n) = 2n ([22, Theorem 1.1.1]).

Lemma 5. Let G be a finite abelian group of order n and let S be a sequence
over G

1. If |S| ≥ n, then S has a nonempty product-one subsequence of length
|S| ≤ h(S) ([16, Theorem 5.7.3]).

2. If r = |S|− (n−2) ≥ 2 and S has no product-one subsequence of length
n, then |Πn−2(S)| = |Πr(S)| ≥ r − 1 ([12, Lemma 7]).

3. If S is product-one free, then |Π(S)| ≥ |S|+ | supp(S)|− 1 ([16, Propo-
sition 5.3.5.1]).

Lemma 6 ([1, Lemma 2.1]). Let G be a multiplicative cyclic group of or-
der n and let S be a sequence over G of length ≥ blog2 nc + 1. Then S has
a nonempty ±-product-one subsequence, which means there exist a subset
J ⊂ [1, |S|] such that ∏

j∈J

gj =
∏

i∈[1,|S|]\J

gi ,

provided that S = g1 · g2 · . . . · g|S|.

We also need the following three technical lemmas.

Lemma 7 ([24, Theoem 1.1]). Let G be a multiplicative cyclic group of
order n and let S be a sequence over G of length n− 1. If Π(S) 6= G and for
every subgroup H ( G, we have |SH | ≤ |H| − 1, then there exists g ∈ G with
ord(g) = n such that S = g[n−1].

Lemma 8. Let k, h ∈ N and let a1, . . . , ak ∈ Z with |ai| ≤ h for every
i ∈ [1, k]. Then there exists a subset I ⊂ [1, k] such that 0 ≤

∑
i∈I ai −∑

j∈[1,k]\I aj ≤ h.

Proof. We proceed by induction on k. If k = 1, then the assertion is
trivial. Suppose k ≥ 2 and the assertion holds for k − 1. Then there exists
I1 ⊂ [1, k−1] such that 0 ≤

∑
i∈I1 ai−

∑
j∈[1,k−1]\I1 aj ≤ h. Let d =

∑
i∈I1 ai−
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∑
j∈[1,k−1]\I1 aj. If ak ≥ 0, then |

∑
i∈I1 ai −

∑
j∈[1,k]\I1 aj| = |d− ak| ≤ h and

hence the assertion follows by choosing I = I1 or [1, k] \ I1. If ak < 0, then
|
∑

i∈I1∪{k} ai−
∑

j∈[1,k−1]\I1 aj| = |d+ak| ≤ h and hence the assertion follows

by choosing I = I1 ∪ {k} or [1, k − 1] \ I1. �

Lemma 9. Let G be a cyclic group of order n with n ≥ 3 odd and let S be
a sequence over G of length ≥ n.

1. S has a ±-product-one subsequence T of odd length with |T | ≤ n.

2. If S has no ±-product-one subsequence T of odd length with |T | < n,
then there exists g ∈ G with ord(g) = n and r ∈ [0, |S|] such that
S = g[r] · (−g)[|S|−r].

Proof. Since G is abelian, for every subsequence T of S, π(T ) has only one
element and we denote such an element by σ(T ), whence π(T ) = {σ(T )}.

1. Let H be a minimal subgroup G such that |SH | ≥ |H|. If H is trivial,
then the assertions follows immediately. Now suppose |H| ≥ 3 and let TH
be a subsequence of SH with length |H|. It suffices to show TH has a ±-
product-one subsequence T of odd length. Thus we may assume G = H and
|S| = n. Fix one term g0 of S and set S1 = S · g[−1]0 ,

ΠE(S) =
⋃

n is even

Πn(S), ΠO(S) =
⋃

n is odd

Πn(S) ,

ΠE(S1) =
⋃

n is even

Πn(S1), ΠO(S1) =
⋃

n is odd

Πn(S1) .

Suppose ΠE(S) ∩ ΠO(S) 6= ∅. Then there exist subsequences T1, T2 of S
with |T1| odd and |T2| even such that σ(T1) = σ(T2), whence

σ(T1 · (gcd(T1, T2))
[−1]) = σ(T2 · (gcd(T1, T2))

[−1]) .

It follows that T1 · T2 · (gcd(T1, T2))
[−2] is ±-product-one subsequence of odd

length.
Suppose Π(S1) 6= G. It follows by Lemma 7 that S = g[n−1] for some

g ∈ G with ord(g) = n. Then there exists x ∈ [0, n − 1] such that g0 = gx.
If x is odd, then g[n−x] · g0 is a product-one sequence of odd length. If x is
even, then g[x] · g0 is a ±-product-one sequence of odd length.

Assume to the contrary that ΠE(S) ∩ ΠO(S) = ∅ and Π(S1) = G. Then

ΠE(S1)
⋃

g0ΠO(S1) ⊂ ΠE(S) and ΠO(S1)
⋃

g0ΠE(S1) ⊂ ΠO(S) ,
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whence

n = |G| ≤ |ΠO(S1)|+ |ΠE(S1)| ≤ |ΠO(S)|+ |ΠE(S)| ≤ n and

n = |G| ≤ |g0ΠO(S1)|+ |g0ΠE(S1)| ≤ |ΠE(S)|+ |ΠO(S)| ≤ n .

Therefore |ΠO(S1)| = |ΠO(S)| = |g0ΠE(S1)| = |ΠE(S1)| and hence n =
2|ΠE(S1)| is even, a contradiction.

2. Let S0 be a subsequence of S with length n. We first show that S0 has
the asserted form.

Suppose S0 is a product-one sequence. If S0 is not a minimal product-one
sequence, then S0 = S1 · S2, where S1, S2 are nonempty product-one subse-
quences, whence |S1| or |S2| must be odd, a contradiction to our assumption.
Thus S is a minimal product-one sequence and it follows by Lemma 4.1 that
S0 = g[n] for some g ∈ G with ord(g) = n.

Suppose S0 is not a product-one sequence. By 1., S0 must be a±-product-
one subsequence and hence S0 = T1 ·T2 with σ(T1) = σ(T2), where T1, T2 are
nonempty sequences.

If there exist subsequences T ′1 | T1 and T ′2 | T2 with 1 ≤ |T ′1 · T ′2| < |S0|
such that σ(T ′1) = σ(T ′2), then both T ′1 ·T ′2 and S0 · (T ′1 ·T ′2)[−1] are nonempty
±-product-one subsequences of length < n. Thus, by our assumption, both
|T ′1 ·T ′2| and |S0 ·(T ′1 ·T ′2)[−1]| are even, a contradiction to the fact that |S0| = n
is odd. Therefore T1, T2 are product-one free and Π(T1) ∩ Π(T2) = {σ(T1)},
whence |π(T1)| ≥ |T1| and |π(T2)| ≥ |T2| by Lemma 5.3.

It follows that

n− 1 ≥ |Π(T1) ∪ Π(T2)| = |Π(T1)|+ |Π(T2)| − |Π(T1) ∩ Π(T2)|
≥ |T1|+ |T2| − 1 = n− 1 ,

whence |Π(T1)| = |T1|, |Π(T2)| = |T2|, and Π(T1)\{σ(T1)} = G\Π(T2). Thus
by Lemma 5.3 again, we have | supp(T1)| = | supp(T2)| = 1, which implies
that there exist g1, g2 ∈ G with ord(g1) > |T1| and ord(g2) > |T2| such that

T1 = g
[|T1|]
1 and T2 = g

[|T2|]
2 . By symmetry, we may assume that |T1| < |T2|.

Thus |T2| > n/2 and hence ord(g2) = n. Let r ∈ [1, n− 1] such that g1 = gr2.
Then σ(T1) = σ(T2) implies |T2| = n− |T1| ≡ r|T1| (mod n). Note that

Π(T2) = {gi2 : i ∈ [1, |T2|]} and Π(T1) = {gir2 : i ∈ [1, |T1|]} .

It follows by Π(T1) \ {σ(T1)} = G \ Π(T2) that

Π(T1) = {gir2 : i ∈ [1, |T1|]} = {gi2 : i ∈ [|T2|, n− 1]} ,
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whence r ∈ [|T2|, n−1] and r > n/2. Assume to the contrary that r 6= n−1.

Then there exists t ∈ [2, |T1|] such that gtr2 = gn−12 and g
(t−1)r
2 = gn−1−r2 ∈

Π(T1), whence n−r−1 ≥ |T2| > n/2. Thus n > r+(n−r−1) > n/2+n/2 =

n, a contradiction. Therefore r = n−1 and hence S0 = (g−12 )[k] ·g[n−k]2 , where
k = |T1| ∈ [1, n− 1].

Now we showed S0 = g[k] · (g−1)[n−k], where k ∈ [0, n] and g ∈ G with
ord(g) = n. Since S0 is chosen arbitrary, we obtain supp(S) = supp(S0) and
hence S = g[k1] · (g−1)[|S|−k1], where k1 ∈ [0, |S|]. �

3. The proof of Theorem 1

Throughout the whole section, we consider the dihedral group D2n :=
〈x, y : x2 = yn = 1, xy = y−1x〉, and let H = 〈y〉 and N = D2n \ H, where
n ≥ 3.

Lemma 10 ([20], Theorem 1.3). Let S be a product-one free sequence of
length n over the dihedral group D2n, where n ≥ 3. If |SN | ≥ 2, then n = 3
and S = x · xy · xy2.

Lemma 11. Let n ≥ 3 be a positive integer. Then

s[1,n](D2n) = n+ 1.

Proof. It is easy to see that W = x · y[n−1] is a product-one free sequence
of length n over D2n. Thus s[1,n](D2n) ≥ n+1. Let S be a sequence of length
n + 1 over D2n. It suffices to show S has a product-one subsequence T of
length 1 ≤ |T | ≤ n.

If |SH | ≥ n, then the assertion follows by Lemma 4.1. If |SH | ≤ n − 1,
then |SN | = |S| − |SH | ≥ 2. Assume to the contrary that S has no product-
one subsequence T of length 1 ≤ |T | ≤ n. Then 1G 6∈ supp(S). Let W
be a subsequence of S with length n such that |WN | ≥ 2. It follows from
Lemma 10 that n = 3 and W = x · xy · xy2. Set S · W [−1] = yα, where
α ∈ [1, 2]. Therefore x · yα · xyα is a product-one subsequence of length n, a
contradiction. �

Lemma 12. If S is a ±-product-one sequence over D2n with |SN | ≥ 1, where
n ≥ 3, then S is a product-one sequence.
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Proof. Since S is a ±-product-one sequence, we obtain |SN | is even. Sup-
pose S = xyα1 · . . . · xyα2u · yβ1 · . . . · yβk , where u ∈ N, k ∈ N0, and
α1, . . . , α2u, β1, . . . , βk ∈ Z. Note that (xyαi)−1 = xyαi for every i ∈ [1, 2u].
After renumbering if necessary, there exists v ∈ [1, k] such that

S ′ = xyα1 · . . . · xyα2u · yβ1 · . . . · yβv · y−βv+1 · . . . · y−βk

is a product-one sequence. It follows from π(S) = π(S ′) that S is also a
product-one sequence. �

The following proposition is crucial in the proof of Theorem 1.

Proposition 13. Let n be an odd integer with n ≥ 3. Then

snN(D2n) = 2n+ blog2 nc.

Proof. Let W = x[2n−1] ·
∏•blog2 nc−1

i=0 y2
i

be a sequence of length 2n +
blog2 nc−1 over D2n. Since n is odd, we obtain W has no nonempty product-
one subsequence T of length |T | ≡ 0 (mod n). Thus snN(D2n) ≥ 2n+blog2 nc.

Let S be a sequence of length 2n + blog2 nc. It suffices to show S has a
product-one subsequence of length n or 2n. If SH has a product-one subse-
quence of length n, then we are done. Thus we may assume that SH has no
product-one subsequence of length n. It follows from Lemma 5.2 that

|Πn−2(SH)| ≥ |SH | − (n− 1) (1)

and by Lemma 4.2 that |SH | ≤ 2n−2, which implies |SN | ≥ blog2 nc+2 ≥ 3.
By changing the generators if necessary, we may assume that vx(SN) =

h(SN). If h(SN) = 1, then SN is squarefree and hence |Π2(SN)| ≥ |SN | − 1.
In view of Equation (1), we have |Π2(SN)|+ |Πn−2(SH)| ≥ |SN | − 1 + |SH | −
(n−1) = n+blog2 nc > |H|. Note that Π2(SN) ⊂ H. It follows from Lemma
3 that

Πn(S) ⊃ Π2(SN) · Πn−2(SH) = H ,

which implies that S has a product-one subsequence of length n.

Now suppose h(SN) = vx(SN) ≥ 2. Let φ : D2n → D2n be a map defined
by φ(xyα) = yα and φ(yα) = yα for all α ∈ [0, n − 1]. Since φ(D2n) = H
is abelian, for every sequence T over H, π(T ) has only one element and we
denote such an element by σ(T ), whence π(T ) = {σ(T )}. We proceed by the
following claim.
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Claim A. If either gcd(φ(SN), SH) is nonempty or S has a ±-product-one
subsequence T of odd length such that |T | ≤ n, then S has a product-one
subsequence of length n or 2n.

Proof of Claim A. We distinguish two cases depending on our assumption.

Case 1: The sequence gcd(φ(SN), SH) is nonempty.

Then T0 = x · yα · xyα is a product-one subsequence of S, where yα is a
term of gcd(φ(SN), SH). If n = 3, then we are done. Now suppose n ≥ 5.
Set

(S · T [−1]
0 )N = U

[2]
1 ·W1 and (S · T [−1]

0 )H = U
[2]
2 · E · E−1 ·W2,

where U1, U2, E,W1,W2 are subsequences such that W1,W2 are squarefree
and W2 has no subsequence of length 2. It follows that |W1| ≤ n and |W2| ≤
n+1
2

, which implies that

2|U1|+2|U2|+2|E| = |S|−|T0|−|W1|−|W2| ≥ (n−1)/2+blog2 nc−3 > 0 . (2)

Let X be a maximal subsequence of gcd(φ(W1),W2) with even length. Then
| gcd(φ(W1) ·X [−1],W2 ·X [−1])| ≤ 1 and X · φ−1(X) is a product of product-
one subsequences of length 4. It follows that |W1| + |W2| − 2|X| ≤ n + 1,
which implies |T0|+2|U1|+2|U2|+2|E|+2|X| ≥ 2n+ blog2 nc− (n+1) ≥ n.
In view of both |T0| and n are odd, it follows from Equation (2) that there
exist subsequences U ′1 | U1, U

′
2 | U2, E

′ | E, and X ′ | X such that

Y := T · (U ′1)
[2] · (U ′2)

[2] · E ′ · (E ′)−1 ·X ′ · φ−1(X ′)

is a ±-product-one subsequence of length n. Since |(T0)N | ≥ 1, Lemma 12
implies that Y is a product-one subsequence of length n.

Case 2: The sequence gcd(φ(SN), SH) is empty and there is a ±-product-one
subsequence T of S with odd length such that |T | ≤ n.

Among all the choices of T , we may assume that T is such a sequence
with minimal length.

Suppose |T | < n. Let T0 = T if |TN | ≥ 1 and let T0 = T · x[2] if |TN | = 0.
Set

(S · T [−1]
0 )N = U

[2]
1 ·W1 and (S · T [−1]

0 )H = U
[2]
2 ·W2,

where U1, U2,W1,W2 are sequences such that W1,W2 are squarefree. Since
gcd(φ(SN), SH) is empty, we obtain |W1|+ |W2| = |φ(W1)|+ |W2| ≤ n, which
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implies that |T0|+2|U1|+2|U2| ≥ |S|−n ≥ n. In view of both |T0| and n are
odd, there exist subsequences U ′1 of U1 and U ′2 of U2 such that T0·(U ′1)[2]·(U ′2)[2]
is a ±-product-one subsequence of length n. Since |(T0)N | ≥ 1, it follows by
Lemma 12 that T0 · (U ′1)

[2] · (U ′2)
[2] is a product-one subsequence of length n.

Suppose |T | = n. If |TN | ≥ 1, then Lemma 12 implies that T is a product-
one subsequence of length n. If |TN | = 0, then |SH | ≥ |T | = n. By the
minimality of |T |, we obtain SH has no ±-product-one subsequence T ′ of odd
length with |T ′| < n. Thus Lemma 9.2 implies that SH = g[k] · (g−1)[|SH |−k],
where k ∈ [0, |S|] and g = yα with gcd(α, n) = 1.

If | supp(SN)| = 1, say SN = (xyβ)[|SN |], where β ∈ [0, n − 1], then there
exist k1 ∈ [1, b|SN |/2c], k2 ∈ [0, bk/2c], and k3 ∈ [0, b(|SH |−k)/2c] such that
(xyβ)[2k1] · g[2k2] · (g−1)[2k3] is a product-one subsequence of length 2n.

Suppose | supp(SN)| ≥ 2, say xgβ1 , xgβ2 ∈ supp(SN), where β1, β2 ∈
[0, n−1] with β1 < β2. If β2−β1 is even, then let k1 ∈ [0, k] and k2 ∈ [0, |SH |−
k] such that k1 + k2 = n− (β2 − β1) ≤ n− 2, whence W := xgβ1 · (g−1)[k2] ·
xgβ2 · g[k1] is a product-one subsequence of odd length 2 + n− (β2− β1) ≤ n.
The minimality of |T | implies that W is a product-one subsequence of length
n. If β2 − β1 is odd, then let k1 ∈ [0, k] and k2 ∈ [0, |SH | − k] such that
k1 + k2 = β2 − β1, whence W := xgβ1 · g[k2] · xgβ2 · (g−1)[k1] is a product-one
subsequence of odd length 2 + (β2 − β1) ≤ n. The minimality of |T | implies
that W is a product-one subsequence of length n.

�[End of Proof of Claim A.]

By Claim A and Lemma 9.1, we may assume that |SH | ≤ n − 1 and
gcd(φ(SN), SH) is empty. Since |SN | ≥ n + blog2 nc + 1, it follow by using
Lemma 5.1 on φ(SN ·x[−h(SN )]) repeatedly, we can find subsequences P1, . . . , P`
of SN · x[−h(SN )] with P1 · . . . · P` dividing SN · x[−h(SN )] such that φ(Pi) are
all product-one subsequences of length |Pi| ≤ h(SN) and

h(SN) + |P1|+ . . .+ |P`| ≥ blog2 nc+ 1 .

Without loss of generality, we may assume that ` ∈ N0 is the minimal integer
such that

h(SN) + |P1|+ . . .+ |P`| ≥ blog2 nc+ 1 ,

whence

blog2 nc+ 1 ≤ h(SN) + |P1|+ . . .+ |P`| ≤ blog2 nc+ 1 + h(SN) .

Suppose

SN = x[h(SN )] · P1 · . . . · P` · U [2]
1 ·W1 and SH = U

[2]
2 ·W2,

11



where U1, U2,W1,W2 are subsequences such that W1, W2 are squarefree. It
follows from the fact that gcd(φ(SN), SH) is empty that |W1 ·W2| ≤ n. By
using Lemma 6, we can find subsequences L1, . . . , Lk of W1 ·W2 such that
φ(Li) are ±-product-one sequences with |Li| ≤ blog2 nc+ 1 and φ(W1 ·W2 ·
(L1 · . . . · Lk)[−1]) has no ±-product-one sequence, which implies

|W1 ·W2 · (L1 · . . . · Lk)[−1]| ≤ blog2 nc .

Therefore

|x[h(SN )] · P1 · . . . · P` · U [2]
1 · U [2]

2 · L1 · . . . · Lk| ≥ 2n . (3)

Set Li = L
(1)
i ·L(2)

i such that σ(φ(L
(1)
i )) = σ(φ(L

(2)
i )) for every i ∈ [1, k]. Now

we distinguish two cases.

Suppose there exists i ∈ [1, k] such that |(Li)H | is odd. By symmetry we

may assume |(L(1)
i )N | ≥ |(L(2)

i )N |. Since |(L(1)
i )N | − |(L(2)

i )N | ≤ blog2 nc + 1,
we have

|(L(1)
i )N | − |(L(2)

i )N | ≤ h(SN) + |P1|+ . . .+ |P`| .

Let J ⊂ [1, `] be a minimal subset (note that J could be empty) such that

|(L(1)
i )N | − |(L(2)

i )N | ≤ h(SN) +
∑
j∈J

|Pj| .

It follows by the minimality of J that

0 ≤ d := |(L(1)
i )N | − |(L(2)

i )N | −
∑
j∈J

|Pj| ≤ h(SN) .

Let (L
(1)
i )N = h1 · . . . ·h|(L(1)

i )N |
and (L

(2)
i )N ·

∏•
j∈J Pj ·x[d] = f1 · . . . ·f|(L(1)

i )N |
,

where h1, . . . , h|(L(1)
i )N |

, f1, . . . , f|(L(1)
i )N |

∈ N . Then

h1 · f1 · . . . · h|(L(1)
i )N |

· f|(L(1)
i )N |

· σ(φ((L
(1)
i )H)) · σ(φ((L

(2)
i )H))−1

=σ(φ((L
(1)
i )N)) · σ(φ((L

(2)
i )N ·

∏•

j∈J
Pj · x[d]))−1 · σ(φ((L

(1)
i )H)) · σ(φ((L

(2)
i )H))−1

=σ(φ((L
(1)
i )N)) · σ(φ((L

(2)
i )N))−1 · σ(φ((L

(1)
i )H)) · σ(φ((L

(2)
i )H))−1

=σ(φ(L
(1)
i )) · σ(φ(L

(2)
i ))−1

=1G ,

12



which implies that Li · x[d] ·
∏•

j∈J Pj is a ±-product-one subsequence of odd

length |(Li)H |+2|(L(1)
i )N | ≤ 2|Li| ≤ 2blog2 nc+2. Thus |Li ·x[d] ·

∏•
j∈J Pj| ≤

2blog2 nc+ 1 ≤ n and hence Claim A implies that S has product-one subse-
quence of length n or 2n.

Suppose for all i ∈ [1, k], we have |(Li)H | is even. Let ai = |(L(1)
i )N | −

|(L(2)
i )N | for all i ∈ [1, k]. Then |ai| ≤ blog2 nc + 1 and by Lemma 8 there

exists a subset I ⊂ [1, k] such that 0 ≤
∑

i∈I ai−
∑

j∈[1,k]\I aj ≤ blog2 nc+ 1.

Let L′i = L
(1)
i and L′′i = L

(2)
i if i ∈ I; and let L′i = L

(2)
i and L′′i = L

(1)
i if

i ∈ [1, k] \ I. Set L′ =
∏•

i∈[1,k] L
′
i and L′′ =

∏•
i∈[1,k] L

′′
i . Then

0 ≤
∑
i∈I

ai −
∑

j∈[1,k]\I

aj = |(L′)N | − |(L′′)N |

≤blog2 nc+ 1 ≤ h(SN) + |P1|+ . . .+ |P`| .

Let J1 ⊂ [1, `] be a minimal subset (note that J1 could be empty) such that

|(L′)N | − |(L′′)N | ≤ h(SN) +
∑
j∈J1

|Pj| .

It follows by the minimality of J1 that

0 ≤ d1 := |(L′)N | − |(L′′)N | −
∑
j∈J1

|Pj| ≤ h(SN) .

Again by Lemma 8, there exists a subset J2 ⊂ [1, `] \ J1 such that∣∣∣∣∣∣d1 +
∑
j∈J2

|Pj| −
∑

j∈[1,`]\(J1∪J2)

|Pj|

∣∣∣∣∣∣
=

∣∣∣∣∣∣|(L′)N |+
∑
j∈J2

|Pj| − |(L′′)N | −
∑

j∈[1,`]\J2

|Pj|

∣∣∣∣∣∣ ≤ h(SN) .

By symmetry of (L′, J2) and (L′′, [1, `] \ J2), we may assume that

d := |(L′)N |+
∑
j∈J2

|Pj| − |(L′′)N | −
∑

j∈[1,`]\J2

|Pj| ≥ 0 .

13



Therefore

d+ |P1|+ . . .+ |P`| (4)

≤

{
blog2 nc+ 1 + h(SN) ≤ 2blog2 nc+ 1 ≤ n, if h(SN) < blog2 nc+ 1;

d = |(L′)N | − |(L′′)N | ≤ blog2 nc+ 1 ≤ n, if h(SN) ≥ blog2 nc+ 1 .

Let P ′ =
∏•

j∈J2 Pj and P ′′ =
∏•

j∈[1,`]\J2 Pj. Suppose (L′)N · P ′ = h1 ·
. . . · h`0 and (L′′)N · P ′′ · x[d] = f1 · . . . · f`0 , where `0 = |(L′)N · P ′| and
h1, . . . , h`0 , f1, . . . , f`0 ∈ N . Therefore

h1 · f1 · . . . · h`0 · f`0 · σ(φ((L′)H)) · σ(φ((L′′)H))−1

=σ(φ((L′)N · P ′) · σ((L′′)N · P ′′)−1 · σ(φ((L′)H)) · σ(φ((L′′)H))−1

=σ(φ((L′)N)) · σ(φ((L′′)N))−1 · σ(φ((L′)H)) · σ(φ((L′′)H))−1

=σ(φ(L′)) · σ(φ(L′′))−1

=1G ,

which implies that W := L′ ·L′′ ·x[d] ·P ′ ·P ′′ is a ±-product-one subsequence
of even length. Note that |W1 ·W2| ≤ n. In view of Equations (4) and (3),
we have

|W | ≤ |W1 ·W2|+ d+
∑̀
i=1

|Pi| ≤ 2n and |W · x[h(SN )−d] · U [2]
1 · U [2]

2 | ≥ 2n .

Therefore there exist k1 ∈ [0, bh(SN)− d/2c], U ′1 | U1, and U ′2 | U2 such that

W · x[2k1] ·U ′[2]1 ·U ′[2]2 is a ±-product-one sequence of length 2n, which is also
a product-one sequence by Lemma 12 and the fact that |SH | ≤ n− 1. �

Proof of Theorem 1. We distinguish three cases.
Suppose d is odd and n|d. Set d = kn, where k ∈ N. Thus n and k

are both odd. Let W = x[2d−1] ·
∏•

i∈[0,blog2 nc−1]
y2

i
be a sequence of length

2d + blog2 nc − 1 over D2n. It is easy to see that W has no nonempty
product-one subsequence T of length |T | ≡ 0 (mod d). Hence, sdN(D2n) ≥
2d+blog2 nc. Let S be a sequence of length 2d+blog2 nc over D2n. It suffices
to show that S has a product-one subsequence of length d or 2d. By using
Lemma 4.4 on S repeatedly, we have a decomposition

S = T1 · . . . · Tk−1 · S1,
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where each Ti is a product-one subsequence of length 2n and S1 is a sequence
of length 2n+blog2 nc. It follows from Proposition 13 that S1 has a product-
one subsequence S2 of length n or 2n. If |S2| = 2n, then T1 · . . . · Tk−1 · S2 is
a product-one subsequence of length 2d. If |S2| = n, then T1 · . . . · T k−1

2
· S2

is a product-one subsequence of length d.
Suppose d is even and n|d. Set d = kn, where k ∈ N. Let W = 1

[d−1]
G ·

x · y[n−1] be a sequence of length d + n − 1 over D2n. It is easy to see
that W has no nonempty product-one subsequence T of length |T | ≡ 0
(mod d). Combining the definitions of sdN(D2n) and s{d}(D2n) yields that
s{d}(D2n) ≥ sdN(D2n) ≥ d+ n. Let S be a sequence of length d+ n over D2n.
It suffices to show S has a product-one subsequence of length d. If k is even,
then by using Lemma 4.4 on S repeatedly we have a decomposition

S = T1 · T2 · . . . · T k
2
· T ′,

where each Ti is a product-one subsequence of length 2n and T ′ is a sequence
of length n. Therefore S · (T ′)[−1] is a product-one subsequence of length d.
If k is odd, then n is even and by using Lemma 4.5 on S repeatedly we have
a decomposition

S = T1 · T2 · . . . · Tk · T ′,
where each Ti is a product-one subsequence of length n and T ′ is a sequence
of length n. Therefore S · (T ′)[−1] is a product-one subsequence of length d.

Suppose gcd(n, d) = 1. Let W = x · y[nd−1] be a sequence of length nd−1
over D2n. It is easy to see that W has no nonempty product-one subsequence
T of length |T | ≡ 0 (mod d). Hence, sdN(D2n) ≥ nd+1. Let S be a sequence
of length nd+1 over D2n. It suffices to show S has a product-one subsequence
T of length |T | ≡ 0 (mod d). By using Lemma 11 on S repeatedly, we have
a decomposition

S = T1 · . . . · Td · T,
where each Ti is a product-one subsequence of length |Ti| ∈ [1, n] and T is a
nonempty sequence. Since |T1| · . . . · |Td| is a sequence over Z of length d, it
follows by Lemma 4.1 (applied for Z/dZ) that there exists a subset I ⊂ [1, d]
such that

∑
i∈I |Ti| ≡ 0 (mod d). Therefore S0 :=

∏•
i∈I Ti is a product-one

subsequence of length |S0| ≡ 0 (mod d). �

4. The proof of Theorem 2

Throughout the whole section, for p, q primes and s ∈ [1, q − 1] with
ordq(s) = p, we consider the metacyclic group Gpq := CpnsCq = 〈x, y : xp =
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yq = 1Gpq , yx = xys〉 and let H = 〈y〉, N = Gpq \ H. We must have p ≥ 2
and p | q − 1. If p = 2, then Gpq is a dihedral group of order 2q. We only
consider the case p ≥ 3, which implies q ≥ 2p+ 1. The following lemma will
be used in the proof of Theorem 2.

Lemma 14 ([2], Theorem 15). s{pq}(Gpq) = pq + p+ q − 2.

Proof of Theorem 2. Let W = 1
[gcd(kp,q)−1]
Gpq

· x[p−1] · y[lcm(kp,q)−1] be a sequence
of length lcm(kp, q)+gcd(kp, q)+p−3 over Gpq. It is easy to see that W has
no nonempty product-one subsequence T of length |T | ≡ 0 (mod kp), which
implies that skpN(Gpq) ≥ lcm(kp, q) + gcd(kp, q) + p− 2. Let S be a sequence
of length lcm(kp, q) + gcd(kp, q) + p − 2 over Gpq. It suffices to show S has
a nonempty subsequence T of length |T | ≡ 0 (mod kp).

Set d = lcm(kp, q) + gcd(kp, q) − 1. If |SN | ≤ p − 1, then |SH | ≥ d. It
follows from Theorem A that SH has a nonempty product-one subsequence
T of length |T | ≡ 0 (mod kp). If q divides k, then |S| = kp + p + q − 2. By
using Lemma 14 on S repeatedly, we have a decomposition

S = T1 · . . . · T k
q
· S1,

where each Ti is a product-one subsequence of length pq and S1 is a sequence
of length p+ q−2. Therefore S ·S[−1]

1 is a product-one subsequence of length
kp.

Now we can suppose |SN | ≥ p and gcd(q, k) = 1, which imply |S| =
kpq + p − 1 and |SH | ≤ kpq − 1. Let ψ : Gpq → 〈x〉 be the homomorphism
defined by ψ(xαyβ) = xα, where α, β ∈ N. Then kerψ = H. Since 〈x〉 ∼= Cp,
it follows from Lemma 4.2 that every sequence of length 2p−1 over Gpq has a
subsequence T of length p such that π(T )∩H 6= ∅. Therefore from S we can
choose product-one subsequences A1, . . . , Ar of length p and subsequences
F1, . . . , F` of length p with 1Gpq 6∈ π(Fi) and π(Fi)∩H 6= ∅ for every i ∈ [1, `]
such that

A1 · . . . ·Ar · F1 · . . . · F` | S and |S · (A1 · . . . ·Ar · F1 · . . . · F`)[−1]| ≤ 2p− 2 ,

where r, ` ∈ N0. Thus

|S · (A1 · . . . · Ar · F1 · . . . · F`)[−1]| ≡ |S| ≡ p− 1 (mod p) ,

which implies that |A1 · . . . · Ar · F1 · . . . · F`| = kpq and r + ` = kq.
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If r ≥ k, then A1 · . . . · Ak is a product-one subsequence of length kp.
Otherwise r ≤ k − 1 and hence ` ≥ q. Since |SN | ≥ p, there exists T ∈
{A1, . . . , Ar, F1, . . . , F`} such that |TN | ≥ 1. After renumbering if necessary,
we may assume that T 6∈ {F1, . . . , Fq−1}. Suppose T = g1 · . . . · gp−1 · xαyβ,
where g1, . . . , gp−1 ∈ Gpq and xαyβ ∈ supp(TN), such that g1 . . . gp−1x

αyβ =
ym for some m ∈ N0, and suppose ymi ∈ π(Fi) for every i ∈ [1, q − 1], where
mi ∈ [1, q − 1]. Thus ymi 6= ymis

α
for every i ∈ [1, q − 1] and

ym
q−1∏
i=1

{ymi , ymisα}

=

ym∏
i∈I

ymi
∏

i∈[1,q−1]\I

ymis
α

: I ⊂ [1, q − 1]


=

g1 . . . gp−1
 ∏
i∈[1,q−1]\I

ymi

xαyβ
∏
i∈I

ymi : I ⊂ [1, q − 1]


⊂π(T · ym1 · . . . · ymq−1)

⊂π(T · F1 · . . . · Fq−1) .

It follows by the Cauchy-Davenport Theorem (see [21, pp 44-45]) that

|ym
q−1∏
i=1

{ymi , ymisα}| ≥ min{q, 1 + 2(q − 1)− (q − 1)} = q ,

which implies that H ⊂ π(T ·F1 · . . . ·Fq−1). Thus 1Gpq ∈ π(A1 · . . . ·Ar ·F1 ·
. . . · F`) and hence A1 · . . . · Ar · F1 · . . . · F` is a product-one subsequence of
length kpq. �
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