# On product-one sequences with congruence conditions over non-abelian groups 

Kevin Zhao ${ }^{\mathrm{a}, *}$, Qinghai Zhong ${ }^{\mathrm{b}, \mathrm{c}}$<br>${ }^{a}$ Department of Mathematics and Statistics, Nanning normal university, Guangxi 530100, China<br>${ }^{b}$ Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstraße 36, 8010 Graz, Austria<br>${ }^{c}$ School of Mathematics and statistics, Shandong University of Technology, Zibo, Shandong 255000, China


#### Abstract

Let $G$ be a finite group. For a positive integer $d$, let $\mathrm{s}_{d \mathbb{N}}(G)$ denote the smallest integer $\ell$ such that every sequence $S$ over $G$ of length $|S| \geq \ell$ has a nonempty product-one subsequence $T$ with $|T| \equiv 0(\bmod d)$. In this paper, we mainly study this invariant for dihedral groups $D_{2 n}$ and metacyclic groups $C_{p} \ltimes{ }_{s} C_{q}$.


Keywords: product-one sequence, dihedral groups, metacyclic groups, congruence conditions.

## 1. Introduction

Let $G$ be a finite multiplicative group and let $\exp (G)=\operatorname{lcm}\{\operatorname{ord}(g): g \in$ $G\}$ be the exponent of $G$. By a sequence $S$ over $G$, we mean a finite unordered sequence with terms from $G$ and repetition allowed. We say $S$ is a productone sequence if its terms can be ordered so that their product equals the identity element of $G$. In most of the cases, a direct "zero-sum" problem asks for the the smallest integer $\ell \in \mathbb{N}$ such that every sequence $S$ over $G$ with length $|S| \geq \ell$ has a product-one subsequence with prescribed length.

[^0]Let $L \subset \mathbb{N}$ be nonempty subset and let $\mathrm{s}_{L}(G)$ be the smallest $\ell \in \mathbb{N} \cup\{\infty\}$ such that every sequence $S$ over $G$ has a product-one subsequence $T$ with length $|T| \in L$. Thus the classic zero-sum invariants $\mathrm{D}(G)=\mathrm{s}_{\mathbb{N}}(G)$ (the Davenport constant), $\mathbf{s}(G)=\mathrm{s}_{\{\exp (G)\}}(G)$ (the EGZ constant), and $\eta(G)=$ $\mathrm{s}_{[1, \exp (G)]}(G)$. The readers may want to consult one of the surveys or monographs ( $9,16,13,17])$. Moreover, $\mathrm{s}_{L}(G)$ is also investigated for various other sets (see, e.g. [8, 19, 3, 10, 11). Among others, A. Geroldinger et al. 14] introduced $\mathrm{s}_{d \mathbb{N}}(G)$ for finite abelian groups and obtained the following result. Theorem A. Let $G$ be a finite abelian group and let d be a positive integer.

1. Suppose $G$ is cyclic. Then

$$
\mathrm{s}_{d \mathbb{N}}(G)=\operatorname{lcm}(|G|, d)+\operatorname{gcd}(|G|, d)-1
$$

2. Suppose $G \cong C_{m} \oplus C_{n}$, where $m, n \in \mathbb{N}$ with $1<m \mid n$. Then

$$
\mathrm{s}_{d \mathbb{N}}(G)=\operatorname{lcm}(n, d)+\operatorname{gcd}(n, \operatorname{lcm}(m, d))+\operatorname{gcd}(m, d)-2
$$

In the present paper, we mainly focus on $\mathbf{s}_{d \mathbb{N}}(G)$ for non-abelian groups. The study of sequences for non-abelian groups dates back to the 1970s (see [23]), and fresh impetus came from applications in factorization theory and invariant theory (see [18, 15, [5, 4, 7]). Diheral groups, dicyclic groups, and metacyclic groups are the most studied ones. Our main results are the following.

Theorem 1. Let $D_{2 n}$ be a dihedral group, where $n \geq 3$, and let d be positive integer. Then

$$
\mathbf{s}_{d \mathbb{N}}\left(D_{2 n}\right)= \begin{cases}2 d+\left\lfloor\log _{2} n\right\rfloor, & \text { if } n \mid d \text { and } d \text { is odd } \\ d+n=\mathbf{s}_{\{d\}}\left(D_{2 n}\right), & \text { if } n \mid d \text { and } d \text { is even }, \\ n d+1, & \text { if } \operatorname{gcd}(n, d)=1\end{cases}
$$

Remark: Note that $n$ divides $\exp \left(D_{2 n}\right)$ and $\exp \left(D_{2 n}\right)$ is always even. We have

$$
\mathbf{s}_{k \exp \left(D_{2 n}\right) \mathbb{N}}\left(D_{2 n}\right)=\mathbf{s}_{k \exp \left(D_{2 n}\right)}\left(D_{2 n}\right)=k \exp \left(D_{2 n}\right)+n .
$$

Theorem 2. Let $C_{p} \ltimes_{s} C_{q}=\left\langle x, y: x^{p}=y^{q}=1, y x=x y^{s}, \operatorname{ord}_{q}(s)=\right.$ $p$, and $p, q$ are primes be a metacyclic group. Then

$$
\mathrm{s}_{k p \mathbb{N}}\left(C_{p} \ltimes_{s} C_{q}\right)=\operatorname{lcm}(k p, q)+p-2+\operatorname{gcd}(k p, q),
$$

where $k \in \mathbb{N}$.

## 2. Preliminaries

Our notation and terminology are consistent with [6, 17, 18]. We briefly gather some key notions and fix notation. Let $\mathbb{N}$ denote the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$, we let $[a, b]=\{x \in \mathbb{Z}$ : $a \leq x \leq b\}$ be the discrete interval between $a$ and $b$. For positive integers $m$ and $n$, we denote by $\operatorname{gcd}(m, n)$ and $\operatorname{lcm}(m, n)$ the greatest common divisor and the least common multiple of $m, n$ respectively. If $\operatorname{gcd}(n, m)=1$, we let $\operatorname{ord}_{n}(m)$ be the minimal positive integer $\ell$ such that $g^{\ell} \equiv 1(\bmod n)$.

Let $G$ be a multiplicatively written finite group with identity $1_{G} \in G$ and let $A, B$ be two nonempty subsets of $G$. We denote $A \cdot B=\{a \cdot b: a \in$ $A, b \in B\}$. Let $\mathcal{F}(G)$ be the free abelian monoid, multiplicatively written, with basis $G$. In combinatorial language, elements of $\mathcal{F}(G)$ are called sequences over $G$, which are unordered finite sequences of terms from $G$ with repetition allowed. In order to distinguish between the group operation in $G$ and the sequence operation in $\mathcal{F}(G)$, we use a bold dot symbol $\cdot$ for the multiplication in $\mathcal{F}(G)$, so $G=(G, \cdot)$ and $\mathcal{F}(G)=(\mathcal{F}(G), \cdot)$. In order to avoid confusion between exponentiation of the group operation • in $G$ and exponentiation of the sequence operation $\cdot$ in $\mathcal{F}(G)$, we use brackets to denote exponentiation in $\mathcal{F}(G)$. Thus, for $g \in G, T \in \mathcal{F}(G)$, and $k \in \mathbb{N}$, we have $g^{[k]}=\underbrace{g \cdot \ldots \cdot g}_{k}$ and $T^{[k]}=\underbrace{T \cdot \ldots \cdot T}_{k}$. Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G}^{\bullet} g^{\left[v_{g}(S)\right]} \in \mathcal{F}(G)
$$

be a sequence over $G$. Then $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ is the multiplicity of $g$ in $S$,

$$
\begin{aligned}
& |S|=\ell=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { is the length of } S ; \\
& \mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\} \text { is the maximum multiplicity of } S ; \\
& \operatorname{supp}(S)=\left\{g \in G: \mathrm{v}_{g}(S)>0\right\} \subseteq G \text { is the support of } S ; \\
& \pi(S)=\left\{g_{\tau(1)} \cdot \ldots \cdot g_{\tau(\ell)} \in G: \tau \text { is a permutation of }[1, \ell]\right\} \subset G \\
& \text { is the set of products of } S .
\end{aligned}
$$

If $|S|=0$, then we say $S$ is empty and use the convention that $\pi(S)=$ $\left\{1_{G}\right\}$. We denote $S^{-1}=g_{1}^{-1} \cdot \ldots \cdot g_{\ell}^{-1}$ and $S_{A}=\prod_{g \in A}^{\bullet} g^{\left[\mathrm{v}_{g}(A)\right]}$ for a subset $A \subset G$. Note that $\operatorname{gcd}\left(S_{1}, S_{2}\right)=\prod_{g \in G}^{\bullet} g^{\left[\min \left\{v_{g}\left(S_{1}\right), v_{g}\left(S_{2}\right)\right\}\right]} \in \mathcal{F}(G)$ for any
$S_{1}, S_{2} \in \mathcal{F}(G)$. For $n \in \mathbb{N}$, the $n$-products and sequence subproducts of $S$ are respectfully denoted by

$$
\Pi_{n}(S)=\bigcup_{T|S,|T|=n} \pi(T) \subset G \quad \text { and } \quad \Pi(S)=\bigcup_{n \geq 1} \Pi_{n}(S) \subset G
$$

In addition, we write

$$
\Pi_{\leq k}(S)=\bigcup_{j \in[1, k]} \Pi_{j}(S) \text { and } \Pi_{\geq k}(S)=\bigcup_{j \geq k} \Pi_{j}(S)
$$

We say $S$ is

- squarefree if $\mathrm{v}_{g}(S) \leq 1$ for all $g \in G$;
- a subsequence of $W$ if $W$ is a sequence over $G$ with $\mathrm{v}_{g}(W) \geq \mathrm{v}_{g}(S)$ for all $g \in G$ (Since $S$ divides $W$ in $\mathcal{F}(G)$, we denote it by $S \mid W$ );
- a product-one sequence if $1_{G} \in \pi(S)$;
- product-one free if $1_{G} \notin \Pi(S)$;
- a minimal product-one sequence if $S$ is a product-one sequence and $S=T_{1} \cdot T_{2}$ implies that $T_{1}$ or $T_{2}$ is empty, where $T_{1}, T_{2}$ are two productone sequences.
- a $\pm$-product-one sequence if there exist a permutation $\tau$ of $[1, \ell]$ and $\varepsilon_{i} \in\{ \pm 1\}$ for $1 \leq i \leq \ell$ such that $g_{\tau(1)}^{\varepsilon_{1}} \cdot g_{\tau(2)}^{\varepsilon_{2}} \cdot \ldots \cdot g_{\tau(\ell)}^{\varepsilon_{\ell}}=1_{G}$

The following four lemmas collect some well-known results in additive combinatorics, which we will need later.

Lemma 3 ([21, Lemma 2.2]). Let $A, B$ be two nonempty subsets of a finite group $G$. If $|A|+|B|>|G|$, then $A \cdot B=G$.

Lemma 4. Let $C_{n}$ be a cyclic group of order $n$ and let $D_{2 n}$ be a dihedral group of order $2 n$, where $n \geq 3$.

1. $\mathrm{D}\left(C_{n}\right)=\mathrm{s}_{\mathbb{N}}\left(C_{n}\right)=n$ and every minimal product-one sequence of length $n$ over $C_{n}$ must have the form $S=g^{[n]}$, where $g \in C_{n}$ with $\operatorname{ord}(g)=n$ ([16, Theorem 5.1.10.1]).
2. $\mathrm{s}_{\{n\}}\left(C_{n}\right)=2 n-1$ (Erdös-Ginzburg-Ziv Theorem, see e.g. [16, Corollary 5.7.5]).
3. $\mathrm{D}\left(D_{2 n}\right)=\mathrm{s}_{\mathbb{N}}\left(D_{2 n}\right)=n+1$ ([2, Lemma 4]).
4. $\mathrm{s}_{\{2 n\}}\left(D_{2 n}\right)=3 n$ ([20, Theorem 8]).
5. If $n$ is even, then $\mathrm{s}_{\{n\}}\left(D_{2 n}\right)=2 n$ ([22, Theorem 1.1.1]).

Lemma 5. Let $G$ be a finite abelian group of order $n$ and let $S$ be a sequence over $G$

1. If $|S| \geq n$, then $S$ has a nonempty product-one subsequence of length $|S| \leq \mathrm{h}(S)$ ([16, Theorem 5.7.3]).
2. If $r=|S|-(n-2) \geq 2$ and $S$ has no product-one subsequence of length $n$, then $\left|\Pi_{n-2}(S)\right|=\left|\Pi_{r}(S)\right| \geq r-1$ ([12, Lemma 7]).
3. If $S$ is product-one free, then $|\Pi(S)| \geq|S|+|\operatorname{supp}(S)|-1$ ([16, Proposition 5.3.5.1]).

Lemma 6 ([1, Lemma 2.1]). Let $G$ be a multiplicative cyclic group of order $n$ and let $S$ be a sequence over $G$ of length $\geq\left\lfloor\log _{2} n\right\rfloor+1$. Then $S$ has a nonempty $\pm$-product-one subsequence, which means there exist a subset $J \subset[1,|S|]$ such that

$$
\prod_{j \in J} g_{j}=\prod_{i \in[1,|S|] \backslash J} g_{i}
$$

provided that $S=g_{1} \cdot g_{2} \cdot \ldots \cdot g_{|S|}$.
We also need the following three technical lemmas.
Lemma 7 ([24, Theoem 1.1]). Let $G$ be a multiplicative cyclic group of order $n$ and let $S$ be a sequence over $G$ of length $n-1$. If $\Pi(S) \neq G$ and for every subgroup $H \subsetneq G$, we have $\left|S_{H}\right| \leq|H|-1$, then there exists $g \in G$ with $\operatorname{ord}(g)=n$ such that $S=g^{[n-1]}$.

Lemma 8. Let $k, h \in \mathbb{N}$ and let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ with $\left|a_{i}\right| \leq h$ for every $i \in[1, k]$. Then there exists a subset $I \subset[1, k]$ such that $0 \leq \sum_{i \in I} a_{i}-$ $\sum_{j \in[1, k] \backslash I} a_{j} \leq h$.

Proof. We proceed by induction on $k$. If $k=1$, then the assertion is trivial. Suppose $k \geq 2$ and the assertion holds for $k-1$. Then there exists $I_{1} \subset[1, k-1]$ such that $0 \leq \sum_{i \in I_{1}} a_{i}-\sum_{j \in[1, k-1] \backslash I_{1}} a_{j} \leq h$. Let $d=\sum_{i \in I_{1}} a_{i}-$
$\sum_{j \in[1, k-1] \backslash I_{1}} a_{j}$. If $a_{k} \geq 0$, then $\left|\sum_{i \in I_{1}} a_{i}-\sum_{j \in[1, k] \backslash I_{1}} a_{j}\right|=\left|d-a_{k}\right| \leq h$ and hence the assertion follows by choosing $I=I_{1}$ or $[1, k] \backslash I_{1}$. If $a_{k}<0$, then $\left|\sum_{i \in I_{1} \cup\{k\}} a_{i}-\sum_{j \in[1, k-1] \backslash I_{1}} a_{j}\right|=\left|d+a_{k}\right| \leq h$ and hence the assertion follows by choosing $I=I_{1} \cup\{k\}$ or $[1, k-1] \backslash I_{1}$.

Lemma 9. Let $G$ be a cyclic group of order $n$ with $n \geq 3$ odd and let $S$ be a sequence over $G$ of length $\geq n$.

1. $S$ has a 土-product-one subsequence $T$ of odd length with $|T| \leq n$.
2. If $S$ has no 土-product-one subsequence $T$ of odd length with $|T|<n$, then there exists $g \in G$ with $\operatorname{ord}(g)=n$ and $r \in[0,|S|]$ such that $S=g^{[r]} \cdot(-g)^{[|S|-r]}$.

Proof. Since $G$ is abelian, for every subsequence $T$ of $S, \pi(T)$ has only one element and we denote such an element by $\sigma(T)$, whence $\pi(T)=\{\sigma(T)\}$.

1. Let $H$ be a minimal subgroup $G$ such that $\left|S_{H}\right| \geq|H|$. If $H$ is trivial, then the assertions follows immediately. Now suppose $|H| \geq 3$ and let $T_{H}$ be a subsequence of $S_{H}$ with length $|H|$. It suffices to show $T_{H}$ has a $\pm-$ product-one subsequence $T$ of odd length. Thus we may assume $G=H$ and $|S|=n$. Fix one term $g_{0}$ of $S$ and set $S_{1}=S \cdot g_{0}^{[-1]}$,

$$
\begin{array}{ll}
\Pi_{E}(S)=\bigcup_{n \text { is even }} \Pi_{n}(S), & \Pi_{O}(S)=\bigcup_{n \text { is odd }} \Pi_{n}(S) \\
\Pi_{E}\left(S_{1}\right)=\bigcup_{n \text { is even }} \Pi_{n}\left(S_{1}\right), & \Pi_{O}\left(S_{1}\right)=\bigcup_{n \text { is odd }} \Pi_{n}\left(S_{1}\right)
\end{array}
$$

Suppose $\Pi_{E}(S) \cap \Pi_{O}(S) \neq \emptyset$. Then there exist subsequences $T_{1}, T_{2}$ of $S$ with $\left|T_{1}\right|$ odd and $\left|T_{2}\right|$ even such that $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$, whence

$$
\sigma\left(T_{1} \cdot\left(\operatorname{gcd}\left(T_{1}, T_{2}\right)\right)^{[-1]}\right)=\sigma\left(T_{2} \cdot\left(\operatorname{gcd}\left(T_{1}, T_{2}\right)\right)^{[-1]}\right)
$$

It follows that $T_{1} \cdot T_{2} \cdot\left(\operatorname{gcd}\left(T_{1}, T_{2}\right)\right)^{[-2]}$ is $\pm$-product-one subsequence of odd length.

Suppose $\Pi\left(S_{1}\right) \neq G$. It follows by Lemma 7 that $S=g^{[n-1]}$ for some $g \in G$ with $\operatorname{ord}(g)=n$. Then there exists $x \in[0, n-1]$ such that $g_{0}=g^{x}$. If $x$ is odd, then $g^{[n-x]} \cdot g_{0}$ is a product-one sequence of odd length. If $x$ is even, then $g^{[x]} \cdot g_{0}$ is a $\pm$-product-one sequence of odd length.

Assume to the contrary that $\Pi_{E}(S) \cap \Pi_{O}(S)=\emptyset$ and $\Pi\left(S_{1}\right)=G$. Then

$$
\Pi_{E}\left(S_{1}\right) \bigcup g_{0} \Pi_{O}\left(S_{1}\right) \subset \Pi_{E}(S) \text { and } \Pi_{O}\left(S_{1}\right) \bigcup g_{0} \Pi_{E}\left(S_{1}\right) \subset \Pi_{O}(S)
$$

whence

$$
\begin{aligned}
& n=|G| \leq\left|\Pi_{O}\left(S_{1}\right)\right|+\left|\Pi_{E}\left(S_{1}\right)\right| \leq\left|\Pi_{O}(S)\right|+\left|\Pi_{E}(S)\right| \leq n \quad \text { and } \\
& n=|G| \leq\left|g_{0} \Pi_{O}\left(S_{1}\right)\right|+\left|g_{0} \Pi_{E}\left(S_{1}\right)\right| \leq\left|\Pi_{E}(S)\right|+\left|\Pi_{O}(S)\right| \leq n .
\end{aligned}
$$

Therefore $\left|\Pi_{O}\left(S_{1}\right)\right|=\left|\Pi_{O}(S)\right|=\left|g_{0} \Pi_{E}\left(S_{1}\right)\right|=\left|\Pi_{E}\left(S_{1}\right)\right|$ and hence $n=$ $2\left|\Pi_{E}\left(S_{1}\right)\right|$ is even, a contradiction.
2. Let $S_{0}$ be a subsequence of $S$ with length $n$. We first show that $S_{0}$ has the asserted form.

Suppose $S_{0}$ is a product-one sequence. If $S_{0}$ is not a minimal product-one sequence, then $S_{0}=S_{1} \cdot S_{2}$, where $S_{1}, S_{2}$ are nonempty product-one subsequences, whence $\left|S_{1}\right|$ or $\left|S_{2}\right|$ must be odd, a contradiction to our assumption. Thus $S$ is a minimal product-one sequence and it follows by Lemma 4 that $S_{0}=g^{[n]}$ for some $g \in G$ with $\operatorname{ord}(g)=n$.

Suppose $S_{0}$ is not a product-one sequence. By 1., $S_{0}$ must be a $\pm$-productone subsequence and hence $S_{0}=T_{1} \cdot T_{2}$ with $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$, where $T_{1}, T_{2}$ are nonempty sequences.

If there exist subsequences $T_{1}^{\prime} \mid T_{1}$ and $T_{2}^{\prime} \mid T_{2}$ with $1 \leq\left|T_{1}^{\prime} \cdot T_{2}^{\prime}\right|<\left|S_{0}\right|$ such that $\sigma\left(T_{1}^{\prime}\right)=\sigma\left(T_{2}^{\prime}\right)$, then both $T_{1}^{\prime} \cdot T_{2}^{\prime}$ and $S_{0} \cdot\left(T_{1}^{\prime} \cdot T_{2}^{\prime}\right)^{[-1]}$ are nonempty $\pm$-product-one subsequences of length $<n$. Thus, by our assumption, both $\left|T_{1}^{\prime} \cdot T_{2}^{\prime}\right|$ and $\left|S_{0} \cdot\left(T_{1}^{\prime} \cdot T_{2}^{\prime}\right)^{[-1]}\right|$ are even, a contradiction to the fact that $\left|S_{0}\right|=n$ is odd. Therefore $T_{1}, T_{2}$ are product-one free and $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2}\right)=\left\{\sigma\left(T_{1}\right)\right\}$, whence $\left|\pi\left(T_{1}\right)\right| \geq\left|T_{1}\right|$ and $\left|\pi\left(T_{2}\right)\right| \geq\left|T_{2}\right|$ by Lemma 5.3 .

It follows that

$$
\begin{aligned}
n-1 & \geq\left|\Pi\left(T_{1}\right) \cup \Pi\left(T_{2}\right)\right|=\left|\Pi\left(T_{1}\right)\right|+\left|\Pi\left(T_{2}\right)\right|-\left|\Pi\left(T_{1}\right) \cap \Pi\left(T_{2}\right)\right| \\
& \geq\left|T_{1}\right|+\left|T_{2}\right|-1=n-1,
\end{aligned}
$$

whence $\left|\Pi\left(T_{1}\right)\right|=\left|T_{1}\right|,\left|\Pi\left(T_{2}\right)\right|=\left|T_{2}\right|$, and $\Pi\left(T_{1}\right) \backslash\left\{\sigma\left(T_{1}\right)\right\}=G \backslash \Pi\left(T_{2}\right)$. Thus by Lemma 5.3 again, we have $\left|\operatorname{supp}\left(T_{1}\right)\right|=\left|\operatorname{supp}\left(T_{2}\right)\right|=1$, which implies that there exist $g_{1}, g_{2} \in G$ with $\operatorname{ord}\left(g_{1}\right)>\left|T_{1}\right|$ and $\operatorname{ord}\left(g_{2}\right)>\left|T_{2}\right|$ such that $T_{1}=g_{1}^{\left[\left|T_{1}\right|\right]}$ and $T_{2}=g_{2}^{\left[\left|T_{2}\right|\right]}$. By symmetry, we may assume that $\left|T_{1}\right|<\left|T_{2}\right|$. Thus $\left|T_{2}\right|>n / 2$ and hence ord $\left(g_{2}\right)=n$. Let $r \in[1, n-1]$ such that $g_{1}=g_{2}^{r}$. Then $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$ implies $\left|T_{2}\right|=n-\left|T_{1}\right| \equiv r\left|T_{1}\right|(\bmod n)$. Note that

$$
\Pi\left(T_{2}\right)=\left\{g_{2}^{i}: i \in\left[1,\left|T_{2}\right|\right]\right\} \text { and } \Pi\left(T_{1}\right)=\left\{g_{2}^{i r}: i \in\left[1,\left|T_{1}\right|\right]\right\} .
$$

It follows by $\Pi\left(T_{1}\right) \backslash\left\{\sigma\left(T_{1}\right)\right\}=G \backslash \Pi\left(T_{2}\right)$ that

$$
\Pi\left(T_{1}\right)=\left\{g_{2}^{i r}: i \in\left[1,\left|T_{1}\right|\right]\right\}=\left\{g_{2}^{i}: i \in\left[\left|T_{2}\right|, n-1\right]\right\},
$$

whence $r \in\left[\left|T_{2}\right|, n-1\right]$ and $r>n / 2$. Assume to the contrary that $r \neq n-1$. Then there exists $t \in\left[2,\left|T_{1}\right|\right]$ such that $g_{2}^{t r}=g_{2}^{n-1}$ and $g_{2}^{(t-1) r}=g_{2}^{n-1-r} \in$ $\Pi\left(T_{1}\right)$, whence $n-r-1 \geq\left|T_{2}\right|>n / 2$. Thus $n>r+(n-r-1)>n / 2+n / 2=$ $n$, a contradiction. Therefore $r=n-1$ and hence $S_{0}=\left(g_{2}^{-1}\right)^{[k]} \cdot g_{2}^{[n-k]}$, where $k=\left|T_{1}\right| \in[1, n-1]$.

Now we showed $S_{0}=g^{[k]} \cdot\left(g^{-1}\right)^{[n-k]}$, where $k \in[0, n]$ and $g \in G$ with $\operatorname{ord}(g)=n$. Since $S_{0}$ is chosen arbitrary, we obtain $\operatorname{supp}(S)=\operatorname{supp}\left(S_{0}\right)$ and hence $S=g^{\left[k_{1}\right]} \cdot\left(g^{-1}\right)^{\left[|S|-k_{1}\right]}$, where $k_{1} \in[0,|S|]$.

## 3. The proof of Theorem 1

Throughout the whole section, we consider the dihedral group $D_{2 n}:=$ $\left\langle x, y: x^{2}=y^{n}=1, x y=y^{-1} x\right\rangle$, and let $H=\langle y\rangle$ and $N=D_{2 n} \backslash H$, where $n \geq 3$.

Lemma 10 ([20], Theorem 1.3). Let $S$ be a product-one free sequence of length $n$ over the dihedral group $D_{2 n}$, where $n \geq 3$. If $\left|S_{N}\right| \geq 2$, then $n=3$ and $S=x \cdot x y \cdot x y^{2}$.

Lemma 11. Let $n \geq 3$ be a positive integer. Then

$$
\mathbf{s}_{[1, n]}\left(D_{2 n}\right)=n+1
$$

Proof. It is easy to see that $W=x \cdot y^{[n-1]}$ is a product-one free sequence of length $n$ over $D_{2 n}$. Thus $\mathbf{s}_{[1, n]}\left(D_{2 n}\right) \geq n+1$. Let $S$ be a sequence of length $n+1$ over $D_{2 n}$. It suffices to show $S$ has a product-one subsequence $T$ of length $1 \leq|T| \leq n$.

If $\left|S_{H}\right| \geq n$, then the assertion follows by Lemma 4.1. If $\left|S_{H}\right| \leq n-1$, then $\left|S_{N}\right|=|S|-\left|S_{H}\right| \geq 2$. Assume to the contrary that $S$ has no productone subsequence $T$ of length $1 \leq|T| \leq n$. Then $1_{G} \notin \operatorname{supp}(S)$. Let $W$ be a subsequence of $S$ with length $n$ such that $\left|W_{N}\right| \geq 2$. It follows from Lemma 10 that $n=3$ and $W=x \cdot x y \cdot x y^{2}$. Set $S \cdot W^{[-1]}=y^{\alpha}$, where $\alpha \in[1,2]$. Therefore $x \cdot y^{\alpha} \cdot x y^{\alpha}$ is a product-one subsequence of length $n$, a contradiction.

Lemma 12. If $S$ is a $\pm$-product-one sequence over $D_{2 n}$ with $\left|S_{N}\right| \geq 1$, where $n \geq 3$, then $S$ is a product-one sequence.

Proof. Since $S$ is a $\pm$-product-one sequence, we obtain $\left|S_{N}\right|$ is even. Suppose $S=x y^{\alpha_{1}} \cdot \ldots \cdot x y^{\alpha_{2 u}} \cdot y^{\beta_{1}} \cdot \ldots \cdot y^{\beta_{k}}$, where $u \in \mathbb{N}, k \in \mathbb{N}_{0}$, and $\alpha_{1}, \ldots, \alpha_{2 u}, \beta_{1}, \ldots, \beta_{k} \in \mathbb{Z}$. Note that $\left(x y^{\alpha_{i}}\right)^{-1}=x y^{\alpha_{i}}$ for every $i \in[1,2 u]$. After renumbering if necessary, there exists $v \in[1, k]$ such that

$$
S^{\prime}=x y^{\alpha_{1}} \cdot \ldots \cdot x y^{\alpha_{2 u}} \cdot y^{\beta_{1}} \cdot \ldots \cdot y^{\beta_{v}} \cdot y^{-\beta_{v+1}} \cdot \ldots \cdot y^{-\beta_{k}}
$$

is a product-one sequence. It follows from $\pi(S)=\pi\left(S^{\prime}\right)$ that $S$ is also a product-one sequence.

The following proposition is crucial in the proof of Theorem 1 .
Proposition 13. Let $n$ be an odd integer with $n \geq 3$. Then

$$
\mathbf{s}_{n \mathbb{N}}\left(D_{2 n}\right)=2 n+\left\lfloor\log _{2} n\right\rfloor .
$$

Proof. Let $W=x^{[2 n-1]} \cdot \prod_{i=0}^{\left.\bullet \log _{2} n\right]-1} y^{2^{i}}$ be a sequence of length $2 n+$ $\left\lfloor\log _{2} n\right\rfloor-1$ over $D_{2 n}$. Since $n$ is odd, we obtain $W$ has no nonempty productone subsequence $T$ of length $|T| \equiv 0(\bmod n)$. Thus $\mathbf{s}_{n \mathbb{N}}\left(D_{2 n}\right) \geq 2 n+\left\lfloor\log _{2} n\right\rfloor$.

Let $S$ be a sequence of length $2 n+\left\lfloor\log _{2} n\right\rfloor$. It suffices to show $S$ has a product-one subsequence of length $n$ or $2 n$. If $S_{H}$ has a product-one subsequence of length $n$, then we are done. Thus we may assume that $S_{H}$ has no product-one subsequence of length $n$. It follows from Lemma 5.2 that

$$
\begin{equation*}
\left|\Pi_{n-2}\left(S_{H}\right)\right| \geq\left|S_{H}\right|-(n-1) \tag{1}
\end{equation*}
$$

and by Lemma 42 that $\left|S_{H}\right| \leq 2 n-2$, which implies $\left|S_{N}\right| \geq\left\lfloor\log _{2} n\right\rfloor+2 \geq 3$.
By changing the generators if necessary, we may assume that $\mathrm{v}_{x}\left(S_{N}\right)=$ $\mathrm{h}\left(S_{N}\right)$. If $\mathrm{h}\left(S_{N}\right)=1$, then $S_{N}$ is squarefree and hence $\left|\Pi_{2}\left(S_{N}\right)\right| \geq\left|S_{N}\right|-1$. In view of Equation (11), we have $\left|\Pi_{2}\left(S_{N}\right)\right|+\left|\Pi_{n-2}\left(S_{H}\right)\right| \geq\left|S_{N}\right|-1+\left|S_{H}\right|-$ $(n-1)=n+\left\lfloor\log _{2} n\right\rfloor>|H|$. Note that $\Pi_{2}\left(S_{N}\right) \subset H$. It follows from Lemma (3) that

$$
\Pi_{n}(S) \supset \Pi_{2}\left(S_{N}\right) \cdot \Pi_{n-2}\left(S_{H}\right)=H
$$

which implies that $S$ has a product-one subsequence of length $n$.
Now suppose $\mathrm{h}\left(S_{N}\right)=\mathrm{v}_{x}\left(S_{N}\right) \geq 2$. Let $\phi: D_{2 n} \rightarrow D_{2 n}$ be a map defined by $\phi\left(x y^{\alpha}\right)=y^{\alpha}$ and $\phi\left(y^{\alpha}\right)=y^{\alpha}$ for all $\alpha \in[0, n-1]$. Since $\phi\left(D_{2 n}\right)=H$ is abelian, for every sequence $T$ over $H, \pi(T)$ has only one element and we denote such an element by $\sigma(T)$, whence $\pi(T)=\{\sigma(T)\}$. We proceed by the following claim.

Claim A. If either $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is nonempty or $S$ has a $\pm$-product-one subsequence $T$ of odd length such that $|T| \leq n$, then $S$ has a product-one subsequence of length $n$ or $2 n$.
Proof of Claim A. We distinguish two cases depending on our assumption.
Case 1: The sequence $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is nonempty.
Then $T_{0}=x \cdot y^{\alpha} \cdot x y^{\alpha}$ is a product-one subsequence of $S$, where $y^{\alpha}$ is a term of $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$. If $n=3$, then we are done. Now suppose $n \geq 5$. Set

$$
\left(S \cdot T_{0}^{[-1]}\right)_{N}=U_{1}^{[2]} \cdot W_{1} \quad \text { and } \quad\left(S \cdot T_{0}^{[-1]}\right)_{H}=U_{2}^{[2]} \cdot E \cdot E^{-1} \cdot W_{2}
$$

where $U_{1}, U_{2}, E, W_{1}, W_{2}$ are subsequences such that $W_{1}, W_{2}$ are squarefree and $W_{2}$ has no subsequence of length 2. It follows that $\left|W_{1}\right| \leq n$ and $\left|W_{2}\right| \leq$ $\frac{n+1}{2}$, which implies that

$$
\begin{equation*}
2\left|U_{1}\right|+2\left|U_{2}\right|+2|E|=|S|-\left|T_{0}\right|-\left|W_{1}\right|-\left|W_{2}\right| \geq(n-1) / 2+\left\lfloor\log _{2} n\right\rfloor-3>0 \tag{2}
\end{equation*}
$$

Let $X$ be a maximal subsequence of $\operatorname{gcd}\left(\phi\left(W_{1}\right), W_{2}\right)$ with even length. Then $\left|\operatorname{gcd}\left(\phi\left(W_{1}\right) \cdot X^{[-1]}, W_{2} \cdot X^{[-1]}\right)\right| \leq 1$ and $X \cdot \phi^{-1}(X)$ is a product of productone subsequences of length 4 . It follows that $\left|W_{1}\right|+\left|W_{2}\right|-2|X| \leq n+1$, which implies $\left|T_{0}\right|+2\left|U_{1}\right|+2\left|U_{2}\right|+2|E|+2|X| \geq 2 n+\left\lfloor\log _{2} n\right\rfloor-(n+1) \geq n$. In view of both $\left|T_{0}\right|$ and $n$ are odd, it follows from Equation (2) that there exist subsequences $U_{1}^{\prime}\left|U_{1}, U_{2}^{\prime}\right| U_{2}, E^{\prime} \mid E$, and $X^{\prime} \mid X$ such that

$$
Y:=T \cdot\left(U_{1}^{\prime}\right)^{[2]} \cdot\left(U_{2}^{\prime}\right)^{[2]} \cdot E^{\prime} \cdot\left(E^{\prime}\right)^{-1} \cdot X^{\prime} \cdot \phi^{-1}\left(X^{\prime}\right)
$$

is a $\pm$-product-one subsequence of length $n$. Since $\left|\left(T_{0}\right)_{N}\right| \geq 1$, Lemma 12 implies that $Y$ is a product-one subsequence of length $n$.
Case 2: The sequence $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is empty and there is a $\pm$-product-one subsequence $T$ of $S$ with odd length such that $|T| \leq n$.

Among all the choices of $T$, we may assume that $T$ is such a sequence with minimal length.

Suppose $|T|<n$. Let $T_{0}=T$ if $\left|T_{N}\right| \geq 1$ and let $T_{0}=T \cdot x^{[2]}$ if $\left|T_{N}\right|=0$. Set

$$
\left(S \cdot T_{0}^{[-1]}\right)_{N}=U_{1}^{[2]} \cdot W_{1} \quad \text { and } \quad\left(S \cdot T_{0}^{[-1]}\right)_{H}=U_{2}^{[2]} \cdot W_{2}
$$

where $U_{1}, U_{2}, W_{1}, W_{2}$ are sequences such that $W_{1}, W_{2}$ are squarefree. Since $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is empty, we obtain $\left|W_{1}\right|+\left|W_{2}\right|=\left|\phi\left(W_{1}\right)\right|+\left|W_{2}\right| \leq n$, which
implies that $\left|T_{0}\right|+2\left|U_{1}\right|+2\left|U_{2}\right| \geq|S|-n \geq n$. In view of both $\left|T_{0}\right|$ and $n$ are odd, there exist subsequences $U_{1}^{\prime}$ of $U_{1}$ and $U_{2}^{\prime}$ of $U_{2}$ such that $T_{0} \cdot\left(U_{1}^{\prime}\right)^{[2]} \cdot\left(U_{2}^{\prime}\right)^{[2]}$ is a $\pm$-product-one subsequence of length $n$. Since $\left|\left(T_{0}\right)_{N}\right| \geq 1$, it follows by Lemma 12 that $T_{0} \cdot\left(U_{1}^{\prime}\right)^{[2]} \cdot\left(U_{2}^{\prime}\right)^{[2]}$ is a product-one subsequence of length $n$.

Suppose $|T|=n$. If $\left|T_{N}\right| \geq 1$, then Lemma 12 implies that $T$ is a productone subsequence of length $n$. If $\left|T_{N}\right|=0$, then $\left|S_{H}\right| \geq|T|=n$. By the minimality of $|T|$, we obtain $S_{H}$ has no $\pm$-product-one subsequence $T^{\prime}$ of odd length with $\left|T^{\prime}\right|<n$. Thus Lemma 9. 2 implies that $S_{H}=g^{[k]} \cdot\left(g^{-1}\right)^{\left[\left|S S_{H}\right|-k\right]}$, where $k \in[0,|S|]$ and $g=y^{\alpha}$ with $\operatorname{gcd}(\alpha, n)=1$.

If $\left|\operatorname{supp}\left(S_{N}\right)\right|=1$, say $S_{N}=\left(x y^{\beta}\right)^{\left[\left|S_{N}\right|\right]}$, where $\beta \in[0, n-1]$, then there exist $k_{1} \in\left[1,\left\lfloor\left|S_{N}\right| / 2\right\rfloor\right], k_{2} \in[0,\lfloor k / 2\rfloor]$, and $k_{3} \in\left[0,\left\lfloor\left(\left|S_{H}\right|-k\right) / 2\right\rfloor\right]$ such that $\left(x y^{\beta}\right)^{\left[2 k_{1}\right]} \cdot g^{\left[2 k_{2}\right]} \cdot\left(g^{-1}\right)^{\left[2 k_{3}\right]}$ is a product-one subsequence of length $2 n$.

Suppose $\left|\operatorname{supp}\left(S_{N}\right)\right| \geq 2$, say $x g^{\beta_{1}}, x g^{\beta_{2}} \in \operatorname{supp}\left(S_{N}\right)$, where $\beta_{1}, \beta_{2} \in$ $[0, n-1]$ with $\beta_{1}<\beta_{2}$. If $\beta_{2}-\beta_{1}$ is even, then let $k_{1} \in[0, k]$ and $k_{2} \in\left[0,\left|S_{H}\right|-\right.$ $k]$ such that $k_{1}+k_{2}=n-\left(\beta_{2}-\beta_{1}\right) \leq n-2$, whence $W:=x g^{\beta_{1}} \cdot\left(g^{-1}\right)^{\left[k_{2}\right]} \cdot$ $x g^{\beta_{2}} \cdot g^{\left[k_{1}\right]}$ is a product-one subsequence of odd length $2+n-\left(\beta_{2}-\beta_{1}\right) \leq n$. The minimality of $|T|$ implies that $W$ is a product-one subsequence of length $n$. If $\beta_{2}-\beta_{1}$ is odd, then let $k_{1} \in[0, k]$ and $k_{2} \in\left[0,\left|S_{H}\right|-k\right]$ such that $k_{1}+k_{2}=\beta_{2}-\beta_{1}$, whence $W:=x g^{\beta_{1}} \cdot g^{\left[k_{2}\right]} \cdot x g^{\beta_{2}} \cdot\left(g^{-1}\right)^{\left[k_{1}\right]}$ is a product-one subsequence of odd length $2+\left(\beta_{2}-\beta_{1}\right) \leq n$. The minimality of $|T|$ implies that $W$ is a product-one subsequence of length $n$.
$\square$ [End of Proof of Claim A.]
By Claim A and Lemma 9.1, we may assume that $\left|S_{H}\right| \leq n-1$ and $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is empty. Since $\left|S_{N}\right| \geq n+\left\lfloor\log _{2} n\right\rfloor+1$, it follow by using Lemma 5.1 on $\phi\left(S_{N} \cdot x^{\left[-\mathrm{h}\left(S_{N}\right)\right]}\right)$ repeatedly, we can find subsequences $P_{1}, \ldots, P_{\ell}$ of $S_{N} \cdot x^{\left[-\mathrm{h}\left(S_{N}\right)\right]}$ with $P_{1} \cdot \ldots \cdot P_{\ell}$ dividing $S_{N} \cdot x^{\left[-\mathrm{h}\left(S_{N}\right)\right]}$ such that $\phi\left(P_{i}\right)$ are all product-one subsequences of length $\left|P_{i}\right| \leq \mathrm{h}\left(S_{N}\right)$ and

$$
\mathrm{h}\left(S_{N}\right)+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right| \geq\left\lfloor\log _{2} n\right\rfloor+1
$$

Without loss of generality, we may assume that $\ell \in \mathbb{N}_{0}$ is the minimal integer such that

$$
\mathrm{h}\left(S_{N}\right)+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right| \geq\left\lfloor\log _{2} n\right\rfloor+1
$$

whence

$$
\left\lfloor\log _{2} n\right\rfloor+1 \leq \mathrm{h}\left(S_{N}\right)+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right| \leq\left\lfloor\log _{2} n\right\rfloor+1+\mathrm{h}\left(S_{N}\right) .
$$

Suppose

$$
S_{N}=x^{\left[\mathrm{h}\left(S_{N}\right)\right]} \cdot P_{1} \cdot \ldots \cdot P_{\ell} \cdot U_{1}^{[2]} \cdot W_{1} \quad \text { and } \quad S_{H}=U_{2}^{[2]} \cdot W_{2}
$$

where $U_{1}, U_{2}, W_{1}, W_{2}$ are subsequences such that $W_{1}, W_{2}$ are squarefree. It follows from the fact that $\operatorname{gcd}\left(\phi\left(S_{N}\right), S_{H}\right)$ is empty that $\left|W_{1} \cdot W_{2}\right| \leq n$. By using Lemma 6, we can find subsequences $L_{1}, \ldots, L_{k}$ of $W_{1} \cdot W_{2}$ such that $\phi\left(L_{i}\right)$ are $\pm$-product-one sequences with $\left|L_{i}\right| \leq\left\lfloor\log _{2} n\right\rfloor+1$ and $\phi\left(W_{1} \cdot W_{2}\right.$. $\left(L_{1} \cdot \ldots \cdot L_{k}\right)^{[-1]}$ ) has no $\pm$-product-one sequence, which implies

$$
\left|W_{1} \cdot W_{2} \cdot\left(L_{1} \cdot \ldots \cdot L_{k}\right)^{[-1]}\right| \leq\left\lfloor\log _{2} n\right\rfloor .
$$

Therefore

$$
\begin{equation*}
\left|x^{\left[\mathrm{h}\left(S_{N}\right)\right]} \cdot P_{1} \cdot \ldots \cdot P_{\ell} \cdot U_{1}^{[2]} \cdot U_{2}^{[2]} \cdot L_{1} \cdot \ldots \cdot L_{k}\right| \geq 2 n \tag{3}
\end{equation*}
$$

Set $L_{i}=L_{i}^{(1)} \cdot L_{i}^{(2)}$ such that $\sigma\left(\phi\left(L_{i}^{(1)}\right)\right)=\sigma\left(\phi\left(L_{i}^{(2)}\right)\right)$ for every $i \in[1, k]$. Now we distinguish two cases.

Suppose there exists $i \in[1, k]$ such that $\left|\left(L_{i}\right)_{H}\right|$ is odd. By symmetry we may assume $\left|\left(L_{i}^{(1)}\right)_{N}\right| \geq\left|\left(L_{i}^{(2)}\right)_{N}\right|$. Since $\left|\left(L_{i}^{(1)}\right)_{N}\right|-\left|\left(L_{i}^{(2)}\right)_{N}\right| \leq\left\lfloor\log _{2} n\right\rfloor+1$, we have

$$
\left|\left(L_{i}^{(1)}\right)_{N}\right|-\left|\left(L_{i}^{(2)}\right)_{N}\right| \leq \mathrm{h}\left(S_{N}\right)+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right| .
$$

Let $J \subset[1, \ell]$ be a minimal subset (note that $J$ could be empty) such that

$$
\left|\left(L_{i}^{(1)}\right)_{N}\right|-\left|\left(L_{i}^{(2)}\right)_{N}\right| \leq \mathrm{h}\left(S_{N}\right)+\sum_{j \in J}\left|P_{j}\right| .
$$

It follows by the minimality of $J$ that

$$
0 \leq d:=\left|\left(L_{i}^{(1)}\right)_{N}\right|-\left|\left(L_{i}^{(2)}\right)_{N}\right|-\sum_{j \in J}\left|P_{j}\right| \leq \mathrm{h}\left(S_{N}\right)
$$

Let $\left(L_{i}^{(1)}\right)_{N}=h_{1} \cdot \ldots \cdot h_{\left|\left(L_{i}^{(1)}\right)_{N}\right|}$ and $\left(L_{i}^{(2)}\right)_{N} \cdot \prod_{j \in J}^{\bullet} P_{j} \cdot x^{[d]}=f_{1} \cdot \ldots \cdot f_{\left|\left(L_{i}^{(1)}\right)_{N}\right|}$, where $h_{1}, \ldots, h_{\left|\left(L_{i}^{(1)}\right)_{N}\right|}, f_{1}, \ldots, f_{\left|\left(L_{i}^{(1)}\right)_{N}\right|} \in N$. Then

$$
\begin{aligned}
& h_{1} \cdot f_{1} \cdot \ldots \cdot h_{\left|\left(L_{i}^{(1)}\right)_{N}\right|} \cdot f_{\left|\left(L_{i}^{(1)}\right)_{N}\right|} \cdot \sigma\left(\phi\left(\left(L_{i}^{(1)}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L_{i}^{(2)}\right)_{H}\right)\right)^{-1} \\
= & \sigma\left(\phi\left(\left(L_{i}^{(1)}\right)_{N}\right)\right) \cdot \sigma\left(\phi\left(\left(L_{i}^{(2)}\right)_{N} \cdot \prod_{j \in J}^{\bullet} P_{j} \cdot x^{[d]}\right)\right)^{-1} \cdot \sigma\left(\phi\left(\left(L_{i}^{(1)}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L_{i}^{(2)}\right)_{H}\right)\right)^{-1} \\
= & \sigma\left(\phi\left(\left(L_{i}^{(1)}\right)_{N}\right)\right) \cdot \sigma\left(\phi\left(\left(L_{i}^{(2)}\right)_{N}\right)\right)^{-1} \cdot \sigma\left(\phi\left(\left(L_{i}^{(1)}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L_{i}^{(2)}\right)_{H}\right)\right)^{-1} \\
= & \sigma\left(\phi\left(L_{i}^{(1)}\right)\right) \cdot \sigma\left(\phi\left(L_{i}^{(2)}\right)\right)^{-1} \\
= & 1_{G},
\end{aligned}
$$

which implies that $L_{i} \cdot x^{[d]} \cdot \prod_{j \in J}^{\bullet} P_{j}$ is a $\pm$-product-one subsequence of odd length $\left|\left(L_{i}\right)_{H}\right|+2\left|\left(L_{i}^{(1)}\right)_{N}\right| \leq 2\left|L_{i}\right| \leq 2\left\lfloor\log _{2} n\right\rfloor+2$. Thus $\left|L_{i} \cdot x^{[d]} \cdot \prod_{j \in J}^{\bullet} P_{j}\right| \leq$ $2\left\lfloor\log _{2} n\right\rfloor+1 \leq n$ and hence Claim A implies that $S$ has product-one subsequence of length $n$ or $2 n$.

Suppose for all $i \in[1, k]$, we have $\left|\left(L_{i}\right)_{H}\right|$ is even. Let $a_{i}=\left|\left(L_{i}^{(1)}\right)_{N}\right|-$ $\left|\left(L_{i}^{(2)}\right)_{N}\right|$ for all $i \in[1, k]$. Then $\left|a_{i}\right| \leq\left\lfloor\log _{2} n\right\rfloor+1$ and by Lemma 8 there exists a subset $I \subset[1, k]$ such that $0 \leq \sum_{i \in I} a_{i}-\sum_{j \in[1, k] \backslash I} a_{j} \leq\left\lfloor\log _{2} n\right\rfloor+1$. Let $L_{i}^{\prime}=L_{i}^{(1)}$ and $L_{i}^{\prime \prime}=L_{i}^{(2)}$ if $i \in I$; and let $L_{i}^{\prime}=L_{i}^{(2)}$ and $L_{i}^{\prime \prime}=L_{i}^{(1)}$ if $i \in[1, k] \backslash I$. Set $L^{\prime}=\prod_{i \in[1, k]}^{\bullet} L_{i}^{\prime}$ and $L^{\prime \prime}=\prod_{i \in[1, k]}^{\bullet} L_{i}^{\prime \prime}$. Then

$$
\begin{aligned}
0 & \leq \sum_{i \in I} a_{i}-\sum_{j \in[1, k\rfloor \backslash I} a_{j}=\left|\left(L^{\prime}\right)_{N}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right| \\
& \leq\left\lfloor\log _{2} n\right\rfloor+1 \leq \mathrm{h}\left(S_{N}\right)+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right| .
\end{aligned}
$$

Let $J_{1} \subset[1, \ell]$ be a minimal subset (note that $J_{1}$ could be empty) such that

$$
\left|\left(L^{\prime}\right)_{N}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right| \leq \mathrm{h}\left(S_{N}\right)+\sum_{j \in J_{1}}\left|P_{j}\right|
$$

It follows by the minimality of $J_{1}$ that

$$
0 \leq d_{1}:=\left|\left(L^{\prime}\right)_{N}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right|-\sum_{j \in J_{1}}\left|P_{j}\right| \leq \mathrm{h}\left(S_{N}\right)
$$

Again by Lemma 8, there exists a subset $J_{2} \subset[1, \ell] \backslash J_{1}$ such that

$$
\begin{aligned}
& \left.\left|\begin{array}{l}
d_{1}+\sum_{j \in J_{2}}\left|P_{j}\right|-\sum_{j \in[1, \ell] \backslash\left(J_{1} \cup J_{2}\right)}\left|P_{j}\right| \mid \\
=
\end{array}\right|\left|\left(L^{\prime}\right)_{N}\right|+\sum_{j \in J_{2}}\left|P_{j}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right|-\sum_{j \in[1, \ell] \backslash J_{2}}\left|P_{j}\right| \right\rvert\, \leq \mathrm{h}\left(S_{N}\right) .
\end{aligned}
$$

By symmetry of $\left(L^{\prime}, J_{2}\right)$ and $\left(L^{\prime \prime},[1, \ell] \backslash J_{2}\right)$, we may assume that

$$
d:=\left|\left(L^{\prime}\right)_{N}\right|+\sum_{j \in J_{2}}\left|P_{j}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right|-\sum_{j \in[1, \ell] \backslash J_{2}}\left|P_{j}\right| \geq 0
$$

Therefore

$$
\begin{align*}
& d+\left|P_{1}\right|+\ldots+\left|P_{\ell}\right|  \tag{4}\\
& \leq \begin{cases}\left\lfloor\log _{2} n\right\rfloor+1+\mathrm{h}\left(S_{N}\right) \leq 2\left\lfloor\log _{2} n\right\rfloor+1 \leq n, & \text { if } \mathrm{h}\left(S_{N}\right)<\left\lfloor\log _{2} n\right\rfloor+1 \\
d=\left|\left(L^{\prime}\right)_{N}\right|-\left|\left(L^{\prime \prime}\right)_{N}\right| \leq\left\lfloor\log _{2} n\right\rfloor+1 \leq n, & \text { if } \mathrm{h}\left(S_{N}\right) \geq\left\lfloor\log _{2} n\right\rfloor+1\end{cases}
\end{align*}
$$

Let $P^{\prime}=\prod_{j \in J_{2}}^{\bullet} P_{j}$ and $P^{\prime \prime}=\prod_{j \in[1, \ell] J_{2}}^{\bullet} P_{j}$. Suppose $\left(L^{\prime}\right)_{N} \cdot P^{\prime}=h_{1} \cdot$ $\ldots \cdot h_{\ell_{0}}$ and $\left(L^{\prime \prime}\right)_{N} \cdot P^{\prime \prime} \cdot x^{[d]}=f_{1} \cdot \ldots \cdot f_{\ell_{0}}$, where $\ell_{0}=\left|\left(L^{\prime}\right)_{N} \cdot P^{\prime}\right|$ and $h_{1}, \ldots, h_{\ell_{0}}, f_{1}, \ldots, f_{\ell_{0}} \in N$. Therefore

$$
\begin{aligned}
& h_{1} \cdot f_{1} \cdot \ldots \cdot h_{\ell_{0}} \cdot f_{\ell_{0}} \cdot \sigma\left(\phi\left(\left(L^{\prime}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L^{\prime \prime}\right)_{H}\right)\right)^{-1} \\
= & \sigma\left(\phi\left(\left(L^{\prime}\right)_{N} \cdot P^{\prime}\right) \cdot \sigma\left(\left(L^{\prime \prime}\right)_{N} \cdot P^{\prime \prime}\right)^{-1} \cdot \sigma\left(\phi\left(\left(L^{\prime}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L^{\prime \prime}\right)_{H}\right)\right)^{-1}\right. \\
= & \sigma\left(\phi\left(\left(L^{\prime}\right)_{N}\right)\right) \cdot \sigma\left(\phi\left(\left(L^{\prime \prime}\right)_{N}\right)\right)^{-1} \cdot \sigma\left(\phi\left(\left(L^{\prime}\right)_{H}\right)\right) \cdot \sigma\left(\phi\left(\left(L^{\prime \prime}\right)_{H}\right)\right)^{-1} \\
= & \sigma\left(\phi\left(L^{\prime}\right)\right) \cdot \sigma\left(\phi\left(L^{\prime \prime}\right)\right)^{-1} \\
= & 1_{G},
\end{aligned}
$$

which implies that $W:=L^{\prime} \cdot L^{\prime \prime} \cdot x^{[d]} \cdot P^{\prime} \cdot P^{\prime \prime}$ is a $\pm$-product-one subsequence of even length. Note that $\left|W_{1} \cdot W_{2}\right| \leq n$. In view of Equations (4) and (3), we have

$$
|W| \leq\left|W_{1} \cdot W_{2}\right|+d+\sum_{i=1}^{\ell}\left|P_{i}\right| \leq 2 n \text { and }\left|W \cdot x^{\left[\mathrm{h}\left(S_{N}\right)-d\right]} \cdot U_{1}^{[2]} \cdot U_{2}^{[2]}\right| \geq 2 n
$$

Therefore there exist $k_{1} \in\left[0,\left\lfloor\mathrm{~h}\left(S_{N}\right)-d / 2\right\rfloor\right], U_{1}^{\prime} \mid U_{1}$, and $U_{2}^{\prime} \mid U_{2}$ such that $W \cdot x^{\left[2 k_{1}\right]} \cdot U_{1}^{\prime[2]} \cdot U_{2}^{\prime[2]}$ is a $\pm$-product-one sequence of length $2 n$, which is also a product-one sequence by Lemma 12 and the fact that $\left|S_{H}\right| \leq n-1$.

Proof of Theorem 1. We distinguish three cases.
Suppose $d$ is odd and $n \mid d$. Set $d=k n$, where $k \in \mathbb{N}$. Thus $n$ and $k$ are both odd. Let $W=x^{[2 d-1]} \cdot \prod_{i \in\left[0,\left\lfloor\log _{2} n\right\rfloor-1\right]} 2^{2^{i}}$ be a sequence of length $2 d+\left\lfloor\log _{2} n\right\rfloor-1$ over $D_{2 n}$. It is easy to see that $W$ has no nonempty product-one subsequence $T$ of length $|T| \equiv 0(\bmod d)$. Hence, $\mathrm{s}_{d \mathbb{N}}\left(D_{2 n}\right) \geq$ $2 d+\left\lfloor\log _{2} n\right\rfloor$. Let $S$ be a sequence of length $2 d+\left\lfloor\log _{2} n\right\rfloor$ over $D_{2 n}$. It suffices to show that $S$ has a product-one subsequence of length $d$ or $2 d$. By using Lemma 44 on $S$ repeatedly, we have a decomposition

$$
S=T_{1} \cdot \ldots \cdot T_{k-1} \cdot S_{1}
$$

where each $T_{i}$ is a product-one subsequence of length $2 n$ and $S_{1}$ is a sequence of length $2 n+\left\lfloor\log _{2} n\right\rfloor$. It follows from Proposition 13 that $S_{1}$ has a productone subsequence $S_{2}$ of length $n$ or $2 n$. If $\left|S_{2}\right|=2 n$, then $T_{1} \cdot \ldots \cdot T_{k-1} \cdot S_{2}$ is a product-one subsequence of length $2 d$. If $\left|S_{2}\right|=n$, then $T_{1} \cdot \ldots \cdot T_{\frac{k-1}{2}} \cdot S_{2}$ is a product-one subsequence of length $d$.

Suppose $d$ is even and $n \mid d$. Set $d=k n$, where $k \in \mathbb{N}$. Let $W=1_{G}^{[d-1]}$. $x \cdot y^{[n-1]}$ be a sequence of length $d+n-1$ over $D_{2 n}$. It is easy to see that $W$ has no nonempty product-one subsequence $T$ of length $|T| \equiv 0$ $(\bmod d)$. Combining the definitions of $\mathrm{s}_{d \mathbb{N}}\left(D_{2 n}\right)$ and $\mathrm{s}_{\{d\}}\left(D_{2 n}\right)$ yields that $\mathrm{s}_{\{d\}}\left(D_{2 n}\right) \geq \mathrm{s}_{d \mathbb{N}}\left(D_{2 n}\right) \geq d+n$. Let $S$ be a sequence of length $d+n$ over $D_{2 n}$. It suffices to show $S$ has a product-one subsequence of length $d$. If $k$ is even, then by using Lemma 44 on $S$ repeatedly we have a decomposition

$$
S=T_{1} \cdot T_{2} \cdot \ldots \cdot T_{\frac{k}{2}} \cdot T^{\prime}
$$

where each $T_{i}$ is a product-one subsequence of length $2 n$ and $T^{\prime}$ is a sequence of length $n$. Therefore $S \cdot\left(T^{\prime}\right)^{[-1]}$ is a product-one subsequence of length $d$. If $k$ is odd, then $n$ is even and by using Lemma 4.5 on $S$ repeatedly we have a decomposition

$$
S=T_{1} \cdot T_{2} \cdot \ldots \cdot T_{k} \cdot T^{\prime},
$$

where each $T_{i}$ is a product-one subsequence of length $n$ and $T^{\prime}$ is a sequence of length $n$. Therefore $S \cdot\left(T^{\prime}\right)^{[-1]}$ is a product-one subsequence of length $d$.

Suppose $\operatorname{gcd}(n, d)=1$. Let $W=x \cdot y^{[n d-1]}$ be a sequence of length $n d-1$ over $D_{2 n}$. It is easy to see that $W$ has no nonempty product-one subsequence $T$ of length $|T| \equiv 0(\bmod d)$. Hence, $\mathbf{s}_{d \mathbb{N}}\left(D_{2 n}\right) \geq n d+1$. Let $S$ be a sequence of length $n d+1$ over $D_{2 n}$. It suffices to show $S$ has a product-one subsequence $T$ of length $|T| \equiv 0(\bmod d)$. By using Lemma 11 on $S$ repeatedly, we have a decomposition

$$
S=T_{1} \cdot \ldots \cdot T_{d} \cdot T
$$

where each $T_{i}$ is a product-one subsequence of length $\left|T_{i}\right| \in[1, n]$ and $T$ is a nonempty sequence. Since $\left|T_{1}\right| \cdot \ldots \cdot\left|T_{d}\right|$ is a sequence over $\mathbb{Z}$ of length $d$, it follows by Lemma 4.1 (applied for $\mathbb{Z} / d \mathbb{Z}$ ) that there exists a subset $I \subset[1, d]$ such that $\sum_{i \in I}\left|T_{i}\right| \equiv 0(\bmod d)$. Therefore $S_{0}:=\prod_{i \in I}^{\bullet} T_{i}$ is a product-one subsequence of length $\left|S_{0}\right| \equiv 0(\bmod d)$.

## 4. The proof of Theorem 2

Throughout the whole section, for $p, q$ primes and $s \in[1, q-1]$ with $\operatorname{ord}_{q}(s)=p$, we consider the metacyclic group $G_{p q}:=C_{p} \ltimes{ }_{s} C_{q}=\left\langle x, y: x^{p}=\right.$
$\left.y^{q}=1_{G_{p q}}, y x=x y^{s}\right\rangle$ and let $H=\langle y\rangle, N=G_{p q} \backslash H$. We must have $p \geq 2$ and $p \mid q-1$. If $p=2$, then $G_{p q}$ is a dihedral group of order $2 q$. We only consider the case $p \geq 3$, which implies $q \geq 2 p+1$. The following lemma will be used in the proof of Theorem 2.

Lemma $14\left([\mathbf{2}]\right.$, Theorem 15). $\mathbf{s}_{\{p q\}}\left(G_{p q}\right)=p q+p+q-2$.

Proof of Theorem 2. Let $W=1_{G_{p q}}^{[\operatorname{gcd}(k p, q)-1]} \cdot x^{[p-1]} \cdot y^{[\mathrm{lcm}(k p, q)-1]}$ be a sequence of length $\operatorname{lcm}(k p, q)+\operatorname{gcd}(k p, q)+p-3$ over $G_{p q}$. It is easy to see that $W$ has no nonempty product-one subsequence $T$ of length $|T| \equiv 0(\bmod k p)$, which implies that $\mathrm{s}_{k p \mathbb{N}}\left(G_{p q}\right) \geq \operatorname{lcm}(k p, q)+\operatorname{gcd}(k p, q)+p-2$. Let $S$ be a sequence of length $\operatorname{lcm}(k p, q)+\operatorname{gcd}(k p, q)+p-2$ over $G_{p q}$. It suffices to show $S$ has a nonempty subsequence $T$ of length $|T| \equiv 0(\bmod k p)$.

Set $d=\operatorname{lcm}(k p, q)+\operatorname{gcd}(k p, q)-1$. If $\left|S_{N}\right| \leq p-1$, then $\left|S_{H}\right| \geq d$. It follows from Theorem A that $S_{H}$ has a nonempty product-one subsequence $T$ of length $|T| \equiv 0(\bmod k p)$. If $q$ divides $k$, then $|S|=k p+p+q-2$. By using Lemma 14 on $S$ repeatedly, we have a decomposition

$$
S=T_{1} \cdot \ldots \cdot T_{\frac{k}{q}} \cdot S_{1}
$$

where each $T_{i}$ is a product-one subsequence of length $p q$ and $S_{1}$ is a sequence of length $p+q-2$. Therefore $S \cdot S_{1}^{[-1]}$ is a product-one subsequence of length $k p$.

Now we can suppose $\left|S_{N}\right| \geq p$ and $\operatorname{gcd}(q, k)=1$, which imply $|S|=$ $k p q+p-1$ and $\left|S_{H}\right| \leq k p q-1$. Let $\psi: G_{p q} \rightarrow\langle x\rangle$ be the homomorphism defined by $\psi\left(x^{\alpha} y^{\beta}\right)=x^{\alpha}$, where $\alpha, \beta \in \mathbb{N}$. Then ker $\psi=H$. Since $\langle x\rangle \cong C_{p}$, it follows from Lemma 4 . 2 that every sequence of length $2 p-1$ over $G_{p q}$ has a subsequence $T$ of length $p$ such that $\pi(T) \cap H \neq \emptyset$. Therefore from $S$ we can choose product-one subsequences $A_{1}, \ldots, A_{r}$ of length $p$ and subsequences $F_{1}, \ldots, F_{\ell}$ of length $p$ with $1_{G_{p q}} \notin \pi\left(F_{i}\right)$ and $\pi\left(F_{i}\right) \cap H \neq \emptyset$ for every $i \in[1, \ell]$ such that
$A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1} \cdot \ldots \cdot F_{\ell} \mid S$ and $\left|S \cdot\left(A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1} \cdot \ldots \cdot F_{\ell}\right)^{[-1]}\right| \leq 2 p-2$,
where $r, \ell \in \mathbb{N}_{0}$. Thus

$$
\left|S \cdot\left(A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1} \cdot \ldots \cdot F_{\ell}\right)^{[-1]}\right| \equiv|S| \equiv p-1 \quad(\bmod p),
$$

which implies that $\left|A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1} \cdot \ldots \cdot F_{\ell}\right|=k p q$ and $r+\ell=k q$.

If $r \geq k$, then $A_{1} \cdot \ldots \cdot A_{k}$ is a product-one subsequence of length $k p$. Otherwise $r \leq k-1$ and hence $\ell \geq q$. Since $\left|S_{N}\right| \geq p$, there exists $T \in$ $\left\{A_{1}, \ldots, A_{r}, F_{1}, \ldots, F_{\ell}\right\}$ such that $\left|T_{N}\right| \geq 1$. After renumbering if necessary, we may assume that $T \notin\left\{F_{1}, \ldots, F_{q-1}\right\}$. Suppose $T=g_{1} \cdot \ldots \cdot g_{p-1} \cdot x^{\alpha} y^{\beta}$, where $g_{1}, \ldots, g_{p-1} \in G_{p q}$ and $x^{\alpha} y^{\beta} \in \operatorname{supp}\left(T_{N}\right)$, such that $g_{1} \ldots g_{p-1} x^{\alpha} y^{\beta}=$ $y^{m}$ for some $m \in \mathbb{N}_{0}$, and suppose $y^{m_{i}} \in \pi\left(F_{i}\right)$ for every $i \in[1, q-1]$, where $m_{i} \in[1, q-1]$. Thus $y^{m_{i}} \neq y^{m_{i} s^{\alpha}}$ for every $i \in[1, q-1]$ and

$$
\begin{aligned}
& y^{m} \prod_{i=1}^{q-1}\left\{y^{m_{i}}, y^{m_{i} s^{\alpha}}\right\} \\
&=\left\{y^{m} \prod_{i \in I} y^{m_{i}} \prod_{i \in[1, q-1] \backslash I} y^{m_{i} s^{\alpha}}: I \subset[1, q-1]\right\} \\
&=\left\{g_{1} \ldots g_{p-1}\left(\prod_{i \in[1, q-1] \backslash I} y^{m_{i}}\right) x^{\alpha} y^{\beta} \prod_{i \in I} y^{m_{i}}: I \subset[1, q-1]\right\} \\
& \subset \pi\left(T \cdot y^{m_{1}} \cdot \ldots \cdot y^{m_{q-1}}\right) \\
& \subset \pi\left(T \cdot F_{1} \cdot \ldots \cdot F_{q-1}\right) .
\end{aligned}
$$

It follows by the Cauchy-Davenport Theorem (see [21, pp 44-45]) that

$$
\left|y^{m} \prod_{i=1}^{q-1}\left\{y^{m_{i}}, y^{m_{i} s^{\alpha}}\right\}\right| \geq \min \{q, 1+2(q-1)-(q-1)\}=q
$$

which implies that $H \subset \pi\left(T \cdot F_{1} \cdot \ldots \cdot F_{q-1}\right)$. Thus $1_{G_{p q}} \in \pi\left(A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1}\right.$. $\left.\ldots \cdot F_{\ell}\right)$ and hence $A_{1} \cdot \ldots \cdot A_{r} \cdot F_{1} \cdot \ldots \cdot F_{\ell}$ is a product-one subsequence of length $k p q$.

## Acknowledgments

This research was supported in part by NSF of China (Grant No. 11671153 and Grant No. 12001331) and by the Austrian Science Fund FWF (Project Number P33499-N).

## References

[1] S. Adhikari, Y. Chen, J. Friedlander, S.V. Konyagin, and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.
[2] J. Bass, Improving the Erdős-Ginzburg-Ziv theorem for some non-abelian groups, J. Number Theory 126 (2007), 217-236.
[3] R. Chi, S. Ding, W. Gao, A. Geroldinger, and W.A. Schmid, On zerosum subsequences of restricted size IV, Acta Math. Hungar. 107 (2005), 337-344.
[4] K. Cziszter and M. Domokos, The Noether number for the groups with a cyclic subgroup of index two, J. Algebra 399 (2014), 546-560.
[5] K. Cziszter and M. Domokos, On the generalized Davenport constant and the Noether number, Central European J. Math. 11 (2013), 1605 1615.
[6] K. Cziszter, M. Domokos, and A. Geroldinger, The interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics, in: Multiplicative Ideal Theory and Factorization Theory, Springer 2016, 43-95.
[7] K. Cziszter, M. Domokos, and I. Szöllősi, The Noether numbers and the Davenport constants of the groups of order less than 32, J. Algebra 510 (2018), 513 - 541.
[8] W. Gao, On zero sum subsequences of restricted size III, Ars Combin. 61 (2001), $65-72$.
[9] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369.
[10] W. Gao, D. Han, J. Peng, and F. Sun, On zero-sum subsequences of length $k \exp (G)$, J. Combin. Theory Ser. A 125 (2014), 240-253.
[11] W. Gao, Y. Li, J. Peng, and G. Wang, A unifying look at zero-sum invariants, Int. J. Number Theory 14(2018), 705-711.
[12] W. Gao and Z. Lu, The Erdős-Ginzburg-Ziv theorem for dihedral groups, J. Pure Appl. Algebra 212 (2008), 311-319.
[13] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1-86.
[14] A. Geroldinger, D. Grynkiewicz, and W. Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar. 131 (2011), 323-345.
[15] A. Geroldinger and D.J. Grynkiewicz, The large Davenport constant I: Groups with a cyclic index 2 subgroup, J. Pure Appl. Algebra 217 (2013), $863-885$.
[16] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol.278, Chapman and Hall/CRC, 2006.
[17] D. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30, Springer, Cham, 2013.
[18] D. Grynkiewicz, The large Davenport constant II: General upper bounds, J. Pure Appl. Algebra 217 (2013), 2221-2246.
[19] S. Kubertin, Zero-sums of length $k q$ in $\mathbb{Z}_{q}^{d}$, Acta Arith. 116 (2005), 145 - 152.
[20] F.E.B. Martínez and S. Ribas, Extremal product-one free sequences in Dihedral and Dicyclic groups, Discrete Math. 341 (2018), 570-578.
[21] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[22] J. Oh and Q. Zhong, On Erdös-Ginzburg-Ziv inverse theorems for dihedral and dicyclic groups, Israel J. Math. 238 (2020), 715-743
[23] J.E. Olson and E.T. White, Sums from a sequence of group elements, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, 1977, pp. 215-222.
[24] Y. Qu and D. Han, An inverse theorem for additive bases, Int. J. Number Theory 12 (2016), 1509-1518.


[^0]:    *Corresponding author
    Email addresses: zhkw-hebei@163.com (Kevin Zhao), qinghai.zhong@uni-graz.at (Qinghai Zhong)

