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Abstract

Let G be a finite group. For a positive integer d, let syn(G) denote the
smallest integer ¢ such that every sequence S over G of length |S| > ¢ has a
nonempty product-one subsequence T with |T| = 0 (mod d). In this paper,
we mainly study this invariant for dihedral groups Ds,, and metacyclic groups

Cy, x5 Cy.
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1. Introduction

Let G be a finite multiplicative group and let exp(G) = lem{ord(g): g €
G} be the exponent of G. By a sequence S over GG, we mean a finite unordered
sequence with terms from G and repetition allowed. We say S is a product-
one sequence if its terms can be ordered so that their product equals the
identity element of G. In most of the cases, a direct ”"zero-sum” problem
asks for the the smallest integer ¢ € N such that every sequence S over G
with length |S| > ¢ has a product-one subsequence with prescribed length.
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Let L C N be nonempty subset and let sy, (G) be the smallest ¢ € NU{oco}
such that every sequence S over G has a product-one subsequence T' with
length |T'| € L. Thus the classic zero-sum invariants D(G) = sy(G) (the
Davenport constant), s(G) = Stexp(c)}(G) (the EGZ constant), and n(G) =
S[Lexp(G)](G). The readers may want to consult one of the surveys or mono-
graphs ([9, 16} 13, 17]). Moreover, s;,(G) is also investigated for various other
sets (see, e.g. [8, 19, 3, 10, 11]). Among others, A. Geroldinger et al. [14]
introduced sgn(G) for finite abelian groups and obtained the following result.

Theorem A. Let G be a finite abelian group and let d be a positive integer.
1. Suppose G is cyclic. Then

san(G) = lem(|G, d) + ged (|G|, d) — 1.
2. Suppose G = C,, ® C,,, where m,n € N with 1 < m|n. Then
san(G) = lem(n, d) + ged(n, lem(m, d)) + ged(m, d) — 2.

In the present paper, we mainly focus on syy(G) for non-abelian groups.
The study of sequences for non-abelian groups dates back to the 1970s (see
[23]), and fresh impetus came from applications in factorization theory and
invariant theory (see [18, 5] [5, 4 [7]). Diheral groups, dicyclic groups, and
metacyclic groups are the most studied ones. Our main results are the fol-
lowing.

Theorem 1. Let D,, be a dihedral group,where n > 3, and let d be positive
integer. Then

2d + |logy |, ifn | d andd is odd,
san(Daon) = S d+n =sqy(Day), ifn|d andd is even,
nd+ 1, if ged(n,d) = 1.

Remark: Note that n divides exp(Da,) and exp(Da,) is always even. We
have

Skexp(Da)N (D2n) = Skexp(Dan) (Dan) = kexp(Dan) + 1.
Theorem 2. Let C, x5 C; = (z,y : 2? = y? = 1l,yz = xy®, ordy(s) =
p, and p,q are primes) be a metacyclic group. Then
skpn(Cp X Cg) = lem(kp, q) +p — 2+ ged(kp, q)
where k € N.



2. Preliminaries

Our notation and terminology are consistent with [6, 17, [18]. We briefly
gather some key notions and fix notation. Let N denote the set of positive
integers and Ng = NU{0}. For real numbers a,b € R, we let [a,b] = {x € Z:
a < x < b} be the discrete interval between a and b. For positive integers m
and n, we denote by ged(m, n) and lem(m, n) the greatest common divisor
and the least common multiple of m, n respectively. If ged(n, m) = 1, we let
ord,(m) be the minimal positive integer ¢ such that g* =1 (mod n).

Let G be a multiplicatively written finite group with identity 1o € G
and let A, B be two nonempty subsets of G. We denote A- B ={a-b:a €
A,b € B}. Let F(G) be the free abelian monoid, multiplicatively written,
with basis G. In combinatorial language, elements of F(G) are called se-
quences over (G, which are unordered finite sequences of terms from G with
repetition allowed. In order to distinguish between the group operation in
G and the sequence operation in F(G), we use a bold dot symbol - for the
multiplication in F(G), so G = (G,-) and F(G) = (F(G),-). In order to
avoid confusion between exponentiation of the group operation - in G' and
exponentiation of the sequence operation - in F(G), we use brackets to de-
note exponentiation in F(G). Thus, for g € G, T € F(G), and k € N, we
have gl =¢g....cg and TH =T ... . T . Let

e k

S=gi+...oq= H‘g[vg(s>1 e F(G)

geG

be a sequence over G. Then vy(S) € Ny is the multiplicity of g in S,

S| =¢= ng(S) € Ny is the length of S;
geG
h(S) = max{v,(S) : g € G} is the maximum multiplicity of S;
supp(S) = {g € G : v,(S) > 0} C G is the support of S;
7(S) ={9-q) .- 9gr0) € G: T is a permutation of [1,{]} C G
is the set of products of S.

If |S| = 0, then we say S is empty and use the convention that w(S) =
{15}. We denote S™* = g;'-...- g, ! and .S’A = [l5ea gls(l for a subset
A C G. Note that ged(Sy,S2) = H;GGg[mln{vg(sl)’vf’(S?)}] € F(G) for any

3



51,8 € F(G). For n € N, the n-products and sequence subproducts of S are
respectfully denoted by

m.(S)= |J #(T)c@ and I(S) = JI.(S) CG.

T|S,|T|=n n>1

In addition, we write

We say S is
e squarefree if v (S) <1 for all g € G;

e a subsequence of W if W is a sequence over G with v, (W) > v,(5) for
all g € G (Since S divides W in F(G), we denote it by S | W);

a product-one sequence if 1¢ € 7(5);

product-one free if 1¢ & I1(S);

e a minimal product-one sequence if S is a product-one sequence and
S = Ti-Ts implies that T7 or T5 is empty, where T}, T5 are two product-
one sequences.

a £-product-one sequence if there exist a permutation 7 of [1,¢] and
g; € {1} for 1 <i < ¢ such that 9oy Iale) - gi’éz) =1g

The following four lemmas collect some well-known results in additive
combinatorics, which we will need later.

Lemma 3 (|21, Lemma 2.2]). Let A, B be two nonempty subsets of a fi-
nite group G. If |A| + |B| > |G|, then A- B = G.

Lemma 4. Let C, be a cyclic group of order n and let Do, be a dihedral
group of order 2n, where n > 3.

1. D(C,) = sn(Cy) = n and every minimal product-one sequence of length
n over C,, must have the form S = g, where g € C,, with ord(g) = n
([16, Theorem 5.1.10.1)).



2. s((Cr) = 2n—1 (Erdés-Ginzburg-Ziv Theorem, see e.g. [16, Corollary
5.7.5]).

3. D(Day,) = sn(Day) =n+1 ([2, Lemma 4]).

4. sqony(Day) = 3n ([4, Theorem §]).

5. If n is even, then sgy(Day) = 2n ([22, Theorem 1.1.1]).

Lemma 5. Let G be a finite abelian group of order n and let S be a sequence
over G

1. If |S| > n, then S has a nonempty product-one subsequence of length
|S| < h(S) ([16, Theorem 5.7.5]).

2. Ifr =|S|—(n—2) > 2 and S has no product-one subsequence of length
n, then |I1,_o(S)| = |IL.(S)| > r —1 ([12, Lemma 7]).

3. If S is product-one free, then |I1(S)| > |S|+ |supp(S)|—1 ([16, Propo-
sition 5.3.5.1]).

Lemma 6 ([I, Lemma 2.1]). Let G be a multiplicative cyclic group of or-
der n and let S be a sequence over G of length > |logyn| + 1. Then S has
a nonempty +-product-one subsequence, which means there exist a subset

J C [1,|S]] such that
ng - H 9i,

jeJ i€[L,ISI\

provided that S = g1 -ga+ ... gis)-
We also need the following three technical lemmas.

Lemma 7 (|24, Theoem 1.1]). Let G be a multiplicative cyclic group of
order n and let S be a sequence over G of length n — 1. IfI1(S) # G and for
every subgroup H C G, we have |Sy| < |H|— 1, then there exists g € G with
ord(g) = n such that S = gl"=1.

Lemma 8. Let k,h € N and let ay,...,a; € Z with |a;| < h for every
i € [1,k]. Then there exists a subset I C [1,k] such that 0 < > . a; —

D jenmng @ < he

ProOOF. We proceed by induction on k. If £k = 1, then the assertion is
trivial. Suppose k£ > 2 and the assertion holds for £k — 1. Then there exists
I C[1,k—1]suchthat 0 < >,/ ai—zje[lﬂk_l]\h aj <h Letd=73; ai—
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Zje[l,k—l]\h a;. If ax > 0, then |Zieh a; — Zjeu,k]\h a;| = |d —ax| < h and
hence the assertion follows by choosing I = I or [1,k] \ I;. If ax < 0, then
| 2 ienumy % — 2 jensipn 4l = |d+ak| < h and hence the assertion follows
by choosing I = I; U{k} or [1,k — 1]\ I;. O

Lemma 9. Let G be a cyclic group of order n with n > 3 odd and let S be
a sequence over G of length > n.

1. S has a £-product-one subsequence T' of odd length with |T'| < n.

2. If S has no £-product-one subsequence T' of odd length with |T'| < n,
then there exists g € G with ord(g) = n and r € [0,|S|] such that
S = g[r] . <_g>“‘9|_r]

PROOF. Since G is abelian, for every subsequence 1" of S, w(7’) has only one
element and we denote such an element by o(7"), whence 7(T") = {o(T)}.

1. Let H be a minimal subgroup G such that |Sy| > |H|. If H is trivial,
then the assertions follows immediately. Now suppose |H| > 3 and let T
be a subsequence of Sy with length |H|. It suffices to show Ty has a +-
product-one subsequence 7' of odd length. Thus we may assume G = H and

|S| = n. Fix one term gy of S and set S; =S - g([)_”,

p(S) = | J M.(9). Mo(S) = | J IL.(S),

n is even n is odd
Mp(S) = |J M.(S), Mo(S1) = |J Ma(S).
n is even n is odd

Suppose Hg(S) NI (S) # (. Then there exist subsequences Ty, Ty of S
with |T1] odd and |T5| even such that o(T}) = o(T3), whence

o (T - (ged(T1, To)) ) = o(Ty - (ged(T1, T2)) 1) .

It follows that T - T - (ged(T1, Tp))!=2 is £-product-one subsequence of odd
length.

Suppose II(S;) # G. It follows by Lemma (7| that S = gl»~ for some
g € G with ord(g) = n. Then there exists € [0,n — 1] such that gy = ¢*.
If z is odd, then g[*=*! . g, is a product-one sequence of odd length. If z is

even, then ¢/l « g, is a +-product-one sequence of odd length.
Assume to the contrary that Ig(S) N1lp(S) = @ and I1(S;) = G. Then

g (S1) | gollo(S1) € Tp(S) and o(Si) | golle(S1) € To(S),
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whence

n = |G| < [Ho(S1)] + Mg(S1)] < [Mo(S)|+ He(S)] <n  and
n = |G| < [gollo(51)] + [golle(S1)| < [Mp(S)] + o (S)| < n.

Therefore |IIp(S1)| = [Ho(S)] = |golle(S1)| = |IIg(S1)| and hence n =
2|l1g(S1)] is even, a contradiction.

2. Let Sy be a subsequence of S with length n. We first show that Sy has
the asserted form.

Suppose Sy is a product-one sequence. If Sy is not a minimal product-one
sequence, then Sy = S + Sy, where S, Sy are nonempty product-one subse-
quences, whence |S1| or |Sa| must be odd, a contradiction to our assumption.
Thus S is a minimal product-one sequence and it follows by Lemma 41 that
Sy = g™ for some g € G with ord(g) = n.

Suppose Sy is not a product-one sequence. By 1., Sy must be a +-product-
one subsequence and hence Sy = T - Ty with o(T71) = o(T3), where Ty, T, are
nonempty sequences.

If there exist subsequences 7] | Ty and Ty | Ty with 1 < |77 - T5| < |So|
such that o(T7) = o(T}), then both T! - T4 and Sy - (T7 - T4)=" are nonempty
+-product-one subsequences of length < n. Thus, by our assumption, both
T} Ty and | Sp- (T} T4)=Y| are even, a contradiction to the fact that |Sy| = n
is odd. Therefore T7, T3 are product-one free and II(77) NII(T3) = {o(T1)},
whence |7 (71)| > |T1| and |7 (T3)| > |T3| by Lemma [5]3.

It follows that

n— 1> [[I(Ty) UTI(Ty)| = [T(T)] + [TI(T5)| — [TI(Ty) NTI(Ty)|

> ||+ |To[-1=n-1,
whence |II(T7)| = |Th], |T(T2)| = | T, and TI(T1)\ {o(T7)} = G\II(T3). Thus
by Lemma .3 again, we have |supp(T})| = |supp(73)| = 1, which implies
that there exist g1,¢2 € G with ord(gy) > |74| and ord(g2) > |T3| such that
T, = gyTlH and Ty = gQTQH. By symmetry, we may assume that |71] < |T3|.
Thus |T3| > n/2 and hence ord(gs) = n. Let r € [1,n — 1] such that ¢; = g5.
Then o(17) = o(13) implies |T5| =n — |T}| = r|T1| (mod n). Note that

(T3) = {gp: i € [1,|Ta[]} and IN(Th) = {g5": i € [1,|T1[]}.

It follows by II(T}) \ {¢(T1)} = G \ II(T3) that

I(T1) = {g'+ i € [L|T1l)} = {g2: i € [|Tal,n — 1]},
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whence r € [|T3|,n—1] and r > n/2. Assume to the contrary that r # n — 1.
Then there exists ¢ € [2,|T}|] such that gi" = gi~* and gg_l)r =gy €
II(Ty), whence n—r—1 > |Ty| > n/2. Thusn > r+(n—r—1) > n/24+n/2 =
n, a contradiction. Therefore r = n—1 and hence Sy = (g5 )l génik}, where
k=T €l,n—1].

Now we showed Sy = gi*l + (¢7))"* where k € [0,n] and g € G with
ord(g) = n. Since Sy is chosen arbitrary, we obtain supp(S) = supp(Sp) and
hence S = gkl . (g~ HlISI=k1l where k, € [0,]S]]. O

3. The proof of Theorem

Throughout the whole section, we consider the dihedral group Ds, :=
(r,y 2 =y" = 1,2y =y 'z), and let H = (y) and N = Dy, \ H, where
n > 3.

Lemma 10 ([20], Theorem 1.3). Let S be a product-one free sequence of
length n over the dihedral group Ds,, where n > 3. If |Sx| > 2, then n = 3
and S = x - xy - vy>.

Lemma 11. Let n > 3 be a positive integer. Then
S[l,n](D2n) =n—+ 1.

PROOF. It is easy to see that W = z - y[*~ is a product-one free sequence
of length n over D,,. Thus s[lm}(Dgn) > n+1. Let S be a sequence of length
n + 1 over D,,. It suffices to show S has a product-one subsequence T' of
length 1 < |T'| < n.

If |Sy| > n, then the assertion follows by Lemma [i]1. If [Sy| < n — 1,
then [Sy| = |S| — |Sy| > 2. Assume to the contrary that S has no product-
one subsequence T" of length 1 < |T'| < n. Then 1g & supp(S). Let W
be a subsequence of S with length n such that |Wy| > 2. It follows from
Lemma [10{ that n = 3 and W = z - 2y - zy%. Set S - WU = ¢y where
a € [1,2]. Therefore x « y® - xy® is a product-one subsequence of length n, a
contradiction. OJ

Lemma 12. IfS is a &=-product-one sequence over Ds, with |Sx| > 1, where
n > 3, then S is a product-one sequence.



PROOF. Since S is a +-product-one sequence, we obtain |Sy| is even. Sup-
pose S = xy®t - ... cqy®2 - P .o yPk where u € N, k € Ny, and
Q1,000 B1, ..., Bx € Z. Note that (zy®)~! = zy® for every i € [1,2ul.
After renumbering if necessary, there exists v € [1, k| such that

—Bk

Oél.

S = xy ~:Uya2“-yf81-...-yﬁ“-y_ﬁv“-...-y
is a product-one sequence. It follows from = (S) = 7(S’) that S is also a
product-one sequence. O

The following proposition is crucial in the proof of Theorem
Proposition 13. Let n be an odd integer with n > 3. Then
San(Dan) = 2n 4+ |logyn|.

PROOF. Let W = 1. H'}f(%QnJ_ly? be a sequence of length 2n +
|logy | —1 over Dy,. Since n is odd, we obtain W has no nonempty product-
one subsequence T of length |T'| = 0 (mod n). Thus s,n(D2,) > 2n+|log, n].
Let S be a sequence of length 2n + |log, n]. It suffices to show S has a
product-one subsequence of length n or 2n. If Sy has a product-one subse-
quence of length n, then we are done. Thus we may assume that Sy has no
product-one subsequence of length n. It follows from Lemma [52 that

(1L —2(Su)| = |Su| = (n—1) (1)

and by Lemmald]2 that |Sy| < 2n—2, which implies |Sy| > |log, n] +2 > 3.

By changing the generators if necessary, we may assume that v,(Sy) =
h(Sy). If h(Sy) = 1, then Sy is squarefree and hence |IIy(Sx)| > |Sn| — 1.
In view of Equation (1)), we have [IIo(Sy)| + |IL,—2(Sk)| > [Sn| — 1+ |Su| —
(n—1) =n+|logyn| > |H|. Note that II5(Sy) C H. It follows from Lemma
B that

Hn(S) D) HQ(SN) . Hn_Q(SH) =H,

which implies that S has a product-one subsequence of length n.

Now suppose h(Sy) = v, (Sn) > 2. Let ¢: Dy, — Dy, be a map defined
by ¢(zy®) = y* and ¢(y*) = y* for all & € [0,n — 1]. Since ¢(Dy,) = H
is abelian, for every sequence T over H, w(T') has only one element and we

denote such an element by o(7T), whence 7(T) = {o(T")}. We proceed by the
following claim.



Claim A. If either gcd(¢(Sn), Su) is nonempty or S has a £-product-one
subsequence T of odd length such that |T| < n, then S has a product-one
subsequence of length n or 2n.

Proof of Claim A. We distinguish two cases depending on our assumption.

Case 1: The sequence ged(¢p(Sy), Sy) is nonempty.
Then Ty = x - y* - zy® is a product-one subsequence of S, where y* is a

term of ged(¢p(Sy), Sy). If n = 3, then we are done. Now suppose n > 5.
Set

(S - T(Eil])N = U1[2] Wy and (S TO[*I])H = U2[2] .E.EL. W,

where Uy, Us, E, W7, Wy are subsequences such that Wy, W, are squarefree
and W5 has no subsequence of length 2. It follows that |W;| < n and |Wy| <
”T“, which implies that

21U |+2|Us|+2|E| = |S|—|To|—|Wi|—|Ws| > (n—1)/2+|logyn]—3 > 0. (2)

Let X be a maximal subsequence of ged(¢p(W;), Wa) with even length. Then
| ged(p(Wy) » XU Wy - XIFU)| < 1 and X - ¢71(X) is a product of product-
one subsequences of length 4. It follows that |Wi| + |[Ws| — 2| X| < n+ 1,
which implies |Tp| +2|Uy| +2|Us| + 2| E| 4+ 2| X| > 2n+ [logyn| — (n+1) > n.
In view of both |Tj| and n are odd, it follows from Equation that there
exist subsequences U; | Uy, Uy | Uy, E' | E, and X' | X such that

Y =T-(U)2 . (U)B. B ()" X7 (X"

is a £-product-one subsequence of length n. Since |(Tp)n| > 1, Lemma
implies that Y is a product-one subsequence of length n.

Case 2: The sequence ged(¢(Sy), Sy) is empty and there is a +-product-one
subsequence T' of S with odd length such that |T| < n.
Among all the choices of T, we may assume that T is such a sequence
with minimal length.
Suppose |T| < n. Let Ty = T if |Tiy| > 1 and let Ty = T - 22 if |Tyy| = 0.
Set
(S-Ti My =0P-w, and (-1 Ny =08,

where Uy, Uy, W1, Wy are sequences such that Wy, W, are squarefree. Since

ged(p(Sy), Sg) is empty, we obtain |W; |+ |[Ws| = |¢(Wh)| + |[Ws| < n, which
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implies that |To| 4 2|Uy|+2|Us| > |S| —n > n. In view of both |Ty| and n are
odd, there exist subsequences U! of U, and U} of Uy such that Ty-(U!)2.(U3)1
is a £-product-one subsequence of length n. Since |(Ty)n| > 1, it follows by
Lemma [12] that Tj - (U])12 « (U4)) is a product-one subsequence of length n.

Suppose |T'| = n. If [Ty| > 1, then Lemmal[l2]implies that 7" is a product-
one subsequence of length n. If |Ty| = 0, then |Sy| > |T| = n. By the
minimality of |T'|, we obtain Sy has no £-product-one subsequence 7" of odd
length with |7"| < n. Thus Lemma @2 implies that Sy = gi* - (g7 1)ISkI=H],
where k € [0,]S5]] and g = y* with ged(a,n) = 1.

If |supp(Sy)| = 1, say Sy = (zy®)I5~! where 8 € [0,n — 1], then there
exist k1 € [1, [[Sn|/2]], k2 € [0, |k/2]], and k3 € [0, [ (|Su|— k)/2]] such that
(zyP)RRil .« gRRal L (=1 k] §g a product-one subsequence of length 2n.

Suppose |supp(Sy)| > 2, say xg™, xg” € supp(Sy), where 31,5, €
[0,n—1] with 51 < 5. If S3— 1 is even, then let k1 € [0, k] and ks € [0, |Sy|—
k] such that k; +ky =n — (B2 — B1) < n — 2, whence W := xg% - (g71)lF2l .
rg”% « gl is a product-one subsequence of odd length 2 +n — (8, — 31) < n.
The minimality of |T'| implies that W is a product-one subsequence of length
n. If By — p1 is odd, then let k; € [0,k] and ko € [0, |Sk| — k] such that
ki + ky = By — B, whence W := xg” « gl*2l . zg%2 . (g=1)F1] is a product-one
subsequence of odd length 2 + (52 — 1) < n. The minimality of |7'| implies
that W is a product-one subsequence of length n.

O[End of Proof of Claim A.]

By Claim A and Lemma [9]1, we may assume that [Sy| < n — 1 and
ged(p(Sn), Sg) is empty. Since |Sy| > n + [logy n] + 1, it follow by using
Lemmal on (b(SN-:U[_h(SN)]) repeatedly, we can find subsequences P, ..., P,
of Sy« z7hSN with P -...- P, dividing Sy - z[=hN] guch that o(P;) are
all product-one subsequences of length |P;| < h(Sy) and

h(SN) + |P1| + ...+ |Pg| > UoanJ +1.

Without loss of generality, we may assume that ¢ € Ny is the minimal integer
such that
h(Sy) + |Pi|+ ...+ |P] > |logan| +1,

whence
llogon| +1 <h(Sy)+ |Pi|+ ...+ |P| < |logan| +1+h(Sy).
Suppose
Sy =2 popUP W, and Sy = U W,
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where Uy, Uy, W1, Wy are subsequences such that Wy, Wy are squarefree. It
follows from the fact that ged(¢(Sy), Sg) is empty that [V - Ws| < n. By
using Lemma |§|, we can find subsequences Lq, ..., Ly of Wi - W5 such that
gzﬁ(LZ-) are =+- product one sequences with |L;| < [logyn| 4+ 1 and ¢(Wy - W -
(Ly - ...+ L)) has no £-product-one sequence, which implies

Wy« Wy (Ly-...- L)Y < [logyn] .
Therefore
S peep U U L L > 2n. (3)
Set L; = Lgl) -LZ@) such that a(qb(Lf;l))) = o(¢(L52))) for every i € [1,k]. Now
we distinguish two cases.

Suppose there exists i € [1, k] such that |(L;)g| is odd. By symmetry we
may assume |(L) x| > [(L?) x| Since [(L7)y| — [(LP) x| < [logyn] +1,
we have

(L) | = (L) n| < h(Sn) + [P+ ...+ Pyl
Let J C [1,/] be a minimal subset (note that J could be empty) such that
(L) x| = [(LP)n] < h(Sw) + > [Py
jeJ

It follows by the minimality of J that

0<d:=|(LM)n| = |(LP)y| - > [P < h(Sy).

jeJ
Let (Lgl))N = hl ... 'h\(Lgl)) | and ( ) H e]P [d] fl f|(LZ(-1))N|’

where hq, .. "hI(L§1>)N|’f1’ . "fl(Li” 1| € N. Then

P fi e by o oG ) - o (6L )™
=a<¢<<LE”>N>> o (¢ <<L£2> '. 5 2 (G((LP) ) - o (S((LP) )
=0 (¢((LM)n)) - o (d((LEP )" < (LM w)) - o (S((LEP) )™
=0 (¢(LV)) - o(o(L)) !

_1G7
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which implies that L; - (@ . H;e ; P; is a £-product-one subsequence of odd

length |(Ly) |+ 2)/(LM) x| < 2|Li| < 2|log,n| +2. Thus |L; -z e, Bl <
2|logyn] + 1 < n and hence Claim A implies that S has product-one subse-
quence of length n or 2n.

Suppose for all ¢ € [1, k], we have |(L;)y| is even. Let a; = |(L§1))N| —

](LEQ))N| for all ¢ € [1,k]. Then |a;| < |logyn] + 1 and by Lemmathere
exists a subset [ C [1, k] such that 0 < >, a;i =3 @5 < [logyn] +1.

Let L) = LY and L) = L if i € I; and let L) = L!¥ and L} = L if

0<> ai— > aj=|(L)v] = (L")l
iel Je[1,EN\I

<llogyn| +1 <h(Sy)+ |Pi|+ ... +|F.

Let J; C [1,/] be a minimal subset (note that .J; could be empty) such that

(L)) = [(L")w] < h(Sw) + > |P].
jeN1
It follows by the minimality of J; that
0<d = |(L)n] = |(L")x] = > |P| < h(Sy).

Jj€N

Again by Lemmal|8] there exists a subset J, C [1,£] \ J; such that

i+ |Bl= Y|P

JEJ2 JELO\(J1UJ2)

=LY+ D 1B = I(LN = D IRl <h(Sk).

Jj€J2 JE[1,4\J2

By symmetry of (L', .J;) and (L”,[1,4] \ J2), we may assume that

d:=|(L)wl+ Y IB = (LNl = > 1P =0.

j€J2 JE[L\J2

13



Therefore

d+|P|+...+ |P] (4)

< llogon| +14+h(Sy) <2|logyn] +1<mn, ifh(Sy) < |logyn|+1;
d=[(L)n] = [(L")n| < [logyn] +1 <n, if h(Sy) > [logyn| +1.

Let P' = [[5.,, P; and P’ = [epan Pi- Suppose (L')y « P' = hy -
«hg and (L")« P" -2l = f, - ...« f,, where {y = |(L')x - P'| and
hi, ... heyy fry- ooy fo, € N. Therefore

hue fueeohey - fo 0 (O((L)m) - o($((L")m) ™"

=0 (¢((L')w - P') - o((L")x - P") " a(¢((L)m)) - o (@((L")ar)) "
=0 (¢((L')n)) - o(d((L")n)) ™ - o(6((L')mr)) - o (&((L")m)) ™

=0 (¢(L)) - o(¢(L")) !

:1G7

which implies that W := L'+ L” - zl? . P’ . P" is a +-product-one subsequence
of even length. Note that |[W; « W3] < n. In view of Equations and (3),
we have

¢
(W <|Wy - Wyl +d+ Z P, < 2n and |W - gt -d g2 gl > 9

i=1

Therefore there exist k; € [0, |h(Sy) — d/2]], U | Uy, and U}, | Uy such that
W . g2kl U{p] . U;m is a +-product-one sequence of length 2n, which is also
a product-one sequence by Lemma [12[ and the fact that |Sy| <n — 1. U

Proof of Theorem [1 We distinguish three cases.

Suppose d is odd and n|d. Set d = kn, where k € N. Thus n and k
are both odd. Let W = gzl?-1. [1%icpo. 108, n 1y be a sequence of length
2d + |logyn| — 1 over Dy,. It is easy to see that W has no nonempty
product-one subsequence 7' of length |T'| = 0 (mod d). Hence, syn(Day) >
2d+ [logy n]. Let S be a sequence of length 2d+ |log, n| over Ds,. It suffices
to show that S has a product-one subsequence of length d or 2d. By using
Lemma [44 on S repeatedly, we have a decomposition

S:Tl'...'Tk_l'Sl,

14



where each T; is a product-one subsequence of length 2n and S is a sequence
of length 2n+ |log, n]. It follows from Proposition [L3|that S; has a product-
one subsequence Sy of length n or 2n. If |Sy| = 2n, then T}« ...+ Tj_1 - Ss is
a product-one subsequence of length 2d. If |Sy| = n, then T} - ... - T% - Sy
is a product-one subsequence of length d.

Suppose d is even and n|d. Set d = kn, where k € N. Let W = 1[5_1} .
z -y 1 be a sequence of length d + n — 1 over D,,. It is easy to see
that W has no nonempty product-one subsequence T of length |T'| = 0
(mod d). Combining the definitions of sgn(Da2n) and sgq(D2y) yields that
s{ay(Dan) > san(D2y) > d+n. Let S be a sequence of length d +n over Dy,
It suffices to show S has a product-one subsequence of length d. If k is even,
then by using Lemma [dl4 on S repeatedly we have a decomposition

S=TTp-...-Ts T
where each T; is a product-one subsequence of length 2n and 7" is a sequence
of length n. Therefore S - (T")I~Y is a product-one subsequence of length d.
If k is odd, then n is even and by using Lemma[d]5 on S repeatedly we have
a decomposition
S=T,-Ty-...- T}, - T,

where each T; is a product-one subsequence of length n and 7" is a sequence
of length n. Therefore S - (T")I7Y is a product-one subsequence of length d.

Suppose ged(n,d) =1. Let W =z - y"4=1l be a sequence of length nd — 1
over Dy,. It is easy to see that W has no nonempty product-one subsequence
T of length |T'| = 0 (mod d). Hence, sqn(D2,) > nd+1. Let S be a sequence
of length nd+1 over Ds,,. It suffices to show S has a product-one subsequence
T of length |T| =0 (mod d). By using Lemma [L1jon S repeatedly, we have
a decomposition

S=T ... Ty T,
where each T; is a product-one subsequence of length |7;| € [1,n] and T is a
nonempty sequence. Since |Ti|- ... |T,| is a sequence over Z of length d, it

follows by Lemma [4]1 (applied for Z/dZ) that there exists a subset I C [1,d]
such that >, ;7| = 0 (mod d). Therefore Sy := []%.; T; is a product-one
subsequence of length |Sy| = 0 (mod d). O

4. The proof of Theorem

Throughout the whole section, for p,q primes and s € [1,q — 1] with
ord,(s) = p, we consider the metacyclic group G, := C, x;C, = (x,y : 2P =

15



y! = 1g,,,yr = xzy°) and let H = (y), N = Gp, \ H. We must have p > 2
and p | ¢ — 1. If p = 2, then G), is a dihedral group of order 2q. We only
consider the case p > 3, which implies ¢ > 2p + 1. The following lemma will
be used in the proof of Theorem [2|

Lemma 14 ([2], Theorem 15). s, (Gpy) =pg+p+q — 2.

Proof of Theorem % Let W = 1[523(@"1)_1] < glp= 1L gy llemp.a)=1] he 5 sequence
of length lem(kp, ¢) +ged(kp, ¢) +p—3 over Gy,. 1t is easy to see that W has
no nonempty product-one subsequence T' of length |T'| = 0 (mod kp), which
implies that sg,n(Gpe) > lem(kp, ¢) + ged(kp, ¢) +p — 2. Let S be a sequence
of length lem(kp, q) + ged(kp, ) + p — 2 over G),. It suffices to show S has
a nonempty subsequence 7" of length || =0 (mod kp).

Set d = lem(kp, q) + ged(kp,q) — 1. If |Sy| < p—1, then |[Syg| > d. It
follows from Theorem A that Sy has a nonempty product-one subsequence
T of length |T| = 0 (mod kp). If ¢ divides k, then |S| =kp+p+q—2. By
using Lemma (14 on S repeatedly, we have a decomposition

S:Tl'...'TE'Sl,

where each T; is a product-one subsequence of length pg and S is a sequence
of length p+ ¢ — 2. Therefore S - Sg_l] is a product-one subsequence of length
kp.

Now we can suppose |Sy| > p and ged(q, k) = 1, which imply |S| =
kpg+p—1 and |Sy| < kpg — 1. Let ¢: G,y — (x) be the homomorphism
defined by 1 (zy”) = x, where a, 3 € N. Then kery) = H. Since (z) = C,,
it follows from Lemmal[d]2 that every sequence of length 2p—1 over Gy, has a
subsequence T' of length p such that 7(7) N H # (. Therefore from S we can
choose product-one subsequences Ay, ..., A, of length p and subsequences
Fy, ..., Fyof length p with 1¢,, & 7(F;) and 7(F;) N H # () for every i € [1,/]
such that

Ao v A Fie o F|Sand [S-(Aj-... A Fr- o F)EY <2p -2,
where r, ¢ € Ny. Thus
1S« (Ay-... A F-. - F)FY=1S=p—1 (mod p),

which implies that [Ay«...« A, - Fy - ...« Fy| = kpg and r 4+ ¢ = kq.
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If r > k, then Ay - ...+ Ay is a product-one subsequence of length kp.
Otherwise r < k — 1 and hence ¢ > ¢. Since |Sy| > p, there exists T' €
{Ay,..., A, Fi,..., F;} such that |Ty| > 1. After renumbering if necessary,
we may assume that T ¢ {Fy,...,F,_1}. Suppose T =g+ ... g1+ 2%Y°,
where g1, ..., 9,1 € Gpg and 2°y” € supp(Ty), such that g; ... g, 12%y" =
y™ for some m € Ny, and suppose y™ € 7(F;) for every i € [1,q — 1], where
m; € [1,q — 1]. Thus y™ # y™*" for every i € [1,q — 1] and

q—1
ym H{yml’ ymiso‘}
=1
= {ymnyml H y™t T C[1,q—1]

gg | T v | = Ly I cllg—1]
i€[l,q—1]\I i€l

Cr(T-y™ « ... oymat)
CW(T'Fl'...‘Fq_l).

It follows by the Cauchy-Davenport Theorem (see [21], pp 44-45]) that

q—1

" Ty™ v} = min{g, 1+ 2(¢— 1) = (¢ = 1)} = q,

=1

which implies that H C n(T'- Fy-...- F,_;). Thus 1g,, € m(Ay ... - A - Fy -

...+ Fy) and hence Ay +...- A, - Fy -...- F, is a product-one subsequence of
length kpq. [l
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